

Leveraging the competitive advantages of endof-life underground coal mines to maximise the creation of green and quality jobs

Grant Agreement 101057789

Deliverable 5.3

Training and re-skilling plans for the transition from coal to renewable energy sectors

Authors

Omar Alexánder León García, Universidad de Oviedo

Deliverable 5.3							
Due date of Deliverable	30.11.2025						
Start - End Date of Project	01.07.2022 – 31.12.2025						
Duration	3.5 years						
Deliverable Lead Partner	UNIOVI						
Dissemination level	Public						
Work Package	WP 5						
Digital File Name	D5.3 Training and re-skilling plans for the transition from coal to renewable energy sectors						
Keywords	Reskilling, Training Programmes, Renewable Energy, Transferable Competences, Skill level						

Disclaimer

The information and photographs in this Deliverable remain the property of the GreenJOBS Project or its Partners. You must not distribute, copy or print this information.

Table of contents

EXE	ECUTIVE SUMMARY	8
<u>1</u>	INTRODUCTION	9
<u>2</u>	METHODOLOGICAL FRAMEWORK	11
2.1		11
2.2		13
2.3		14
2.4	,	15
2.5	QUALITY ASSURANCE AND RECOGNITION OF PRIOR LEARNING	16
3	STRUCTURE OF TRAINING PLANS	17
_		
3.1	OVERVIEW OF TEMPLATE AND KEY COMPONENTS	17
3.2	COMMON STRUCTURE ACROSS RENEWABLE ENERGY TECHNOLOGIES	17
3.3	CLASSIFICATION BY SKILL LEVEL (HIGH, MEDIUM, LOW)	18
3.4	EDUCATION LEVELS COVERED (VET, ADULT LEARNING, UNIVERSITY)	18
<u>4</u>	TRAINING PLANS BY RENEWABLE ENERGY SECTOR	20
4.1	WIND ENERGY	20
4.1 4.2		23
4 .2		25
4.4		27
4.5		28
4.6	· ,	30
4.7		32
4.7.		33
4.7		37
5	IMPLEMENTATION STRATEGY AND RECOMMENDATIONS	40
_		
5.1		40
5.2		41
5.3		41
5.4	MONITORING, EVALUATION, AND CONTINUOUS IMPROVEMENT	43
6	CONCLUSIONS & LESSONS LEARNED	45

7 GLOSSARY	47
8 REFERENCES	48
APPENDICES	49
APPENDIX A – TRAINING PLANS WIND ENERGY	50
APPENDIX B – TRAINING PLANS PHOTOVOLTAIC ENERGY	55
APPENDIX C – TRAINING PLANS GEOTHERMAL ENERGY	62
APPENDIX D – TRAINING PLANS GREEN HYDROGEN	69
Appendix E – Training Plans Pumped Hydro System	76
APPENDIX F – TRAINING PLANS BATTERY ENERGY	83

List of Figures

Figure 3-1. Training program details categorized by skill level	19
Figure 5-1. Summary of implementation strategy and recommendations	44

List of Tables

Table 2-1. EQF Levels and their application in Training Programs	12
Table 4-1. Wind Energy Training Programmes	21
Table 4-2. Outlines examples of training plans designed for the wind energy sector	22
Table 4-3. Photovoltaics Energy Training Programmes	
Table 4-4. Geothermal Energy Training Programmes	
Table 4-5. Green Hydrogen Training Programmes	
Table 4-6. Pumped Hydro Training Programmes	
Table 4-7. Battery Energy Training Programmes	
Table 4-8. Overview of Cross-Sectoral Academic Programmes	
Table 4-9. Degree in renewable energy and sustainability engineering	
Table 4-10. Postgraduate Programme in Mining Transition and Sustainable In	
Reconversion	39

Executive Summary

The shift from coal-based economies to renewable energy systems represents both a technological and a social challenge. In former coal regions, the decline of mining has left communities facing the urgent need for economic alternatives and re-employment opportunities. A just transition requires equipping former mining workers with the skills needed to access new green jobs and actively contribute to the energy transition.

This deliverable addresses that challenge by presenting a set of training and re-skilling programmes tailored to support the transfer of competences from coal mining to renewable energy sectors. While coal mining relied on technical expertise in equipment handling, electrical and mechanical maintenance, process operation, and safety protocols, many of these skills are directly applicable to technologies such as solar, wind, hydropower, green hydrogen, and energy storage. Recognising and leveraging these transferable competences allows training initiatives to be designed efficiently, minimising costs and reducing time to qualification.

The programmes proposed in this deliverable are structured across different educational levels to ensure inclusiveness and accessibility. At vocational and apprenticeship levels, they provide practical training for operational roles. In continuing education, they target supervisory and technical positions, while at university level they introduce cross-sectoral programmes designed to prepare graduates for complex, multidisciplinary challenges.

All programmes are aligned with the European Qualifications Framework (EQF), ensuring both academic recognition and professional relevance. Their modular and flexible structure, built on micro-credentials where appropriate, enables progressive skill acquisition and supports lifelong learning. The deliverable provides a comprehensive framework for transforming existing mining competences into future-oriented capabilities for the renewable energy sector.

1 INTRODUCTION

The transition towards a renewable and sustainable energy system is not only a technological challenge but also an educational one. Beyond the deployment of new infrastructures, the success of the energy transition depends on the availability of a skilled workforce capable of operating, maintaining, and optimising emerging technologies. In regions historically reliant on coal mining, this challenge acquires a critical socio-economic dimension: offering pathways for former mining workers to reintegrate into the labour market through targeted education, re-skilling, and up-skilling programmes.

Coal mining has historically required competences in equipment handling, electrical and mechanical maintenance, safety protocols, process operation, and logistics. Although developed in a fossil-based context, many of these skills are transferrable to renewable energy systems such as solar, wind, hydropower, green hydrogen, and energy storage. Recognising and leveraging this transferability enables the design of training pathways that are more efficient, reducing costs and time to qualification while ensuring inclusiveness in the transition process.

The objective of this deliverable is to design training and re-skilling programmes that translate previous analytical work on occupational profiles into concrete educational frameworks. By providing modular, scalable, and EQF-aligned programmes, the deliverable ensures that workers at different educational levels can access meaningful learning opportunities. The approach adopted for programme design is structured around a set of key tasks:

- Identification of training needs: aligning coal mining competences with renewable energy requirements to define skills gaps.
- Definition of learning pathways: establishing vocational, technical, and academic routes tailored to low-, medium-, and high-skilled profiles.
- Design of modular structures: creating programmes based on micro-credentials and modular units that enable flexible progression and lifelong learning.
- Integration of cross-sectoral programmes: incorporating university-level degrees and postgraduate studies that provide advanced and multidisciplinary expertise in renewable energy systems.
- Reference to EQF standards: ensuring compatibility with the European Qualifications Framework to facilitate recognition and transferability across contexts.

Together, these tasks ensure that the proposed programmes are both practical and future-oriented. At vocational schools and apprenticeships, they provide operational training for roles such as plant operators, technicians, and assistants. In continuing education, they focus on supervisory, maintenance, and process optimisation competences. At university level, they introduce cross-sectoral academic programmes such as a Bachelor's Degree in

Degree in renewable energy and sustainability engineering and a Postgraduate Programme in Advanced Renewable Systems Integration, both designed to equip graduates with the capacity to design, manage, and optimise complex energy systems.

The guiding principles of this design are threefold: leveraging transferable competences to reduce the learning curve for former coal mining workers; ensuring flexibility and modularity so that training can be adapted to diverse learner profiles and industry dynamics; and maintaining alignment with industry needs and academic standards, guaranteeing both professional relevance and educational recognition.system.

2 METHODOLOGICAL FRAMEWORK

The development of training and re-skilling plans for former coal workers under the GreenJOBS project follows a structured methodology aligned with European standards and best practices in vocational education and training. The framework ensures that all proposed programmes are adaptable, recognisable, and transferable across EU Member States, supporting a just and inclusive transition to renewable energy sectors.

This deliverable builds directly upon the findings of Deliverable 5.2, which analysed the occupational profiles of coal sector workers, mapped them against renewable energy value chains, and identified competence gaps and potential for re-skilling. The present document focuses on the translation of those analytical findings into actionable training plans, aligned with European education and labour frameworks.

The methodology combines several European tools and frameworks: the EQF, the European Skills, Competences, Qualifications and Occupations (ESCO) classification of skills and occupations, the microcredentials initiative, the learning outcomes approach, and quality assurance mechanisms (Commission, 2019). Microcredentials, in particular, are recognised for their potential to connect people's skillsets with labour market demand in a rapidly changing world of work (Cedefop, 2024) These elements provide a coherent basis for designing modular, flexible training paths that meet labour market needs and are tailored to the profiles of ex-coal workers.

2.1 Alignment with the European Qualifications Framework (EQF)

The EQF is used as the main reference system for assigning levels to each training programme. This enables comparison of qualifications across countries and helps identify appropriate educational levels for each target group. It supports both vertical progression (e.g., from vocational to higher education) and horizontal transferability (e.g., between sectors such as mining and renewable energy). This flexibility is further enhanced by the integration of microcredentials, which offer agile, targeted learning opportunities that can be stacked and recognised within the broader EQF structure, thus supporting a more responsive and personalised upskilling pathway (Cedefop, 2023; Pouliou, 2024).

Each training plan developed in this deliverable is referenced to an EQF level (typically ranging from Level 2 to Level 8) reflecting the complexity of the learning outcomes expected in terms of knowledge, skills, and autonomy/responsibility. The table 2-1 summarizes the key characteristics of each EQF level, including the type of knowledge, required skills, degree of autonomy, and typical job roles associated with each stage of professional development.

Table 2-1. EQF Levels and their application in Training Programs

EQF Level	Type of Knowledge	Type of Skills	Degree of Autonomy and Responsibility	Typical Roles
Level 2	knowledge of simple principles in a field of work or study. Basic cognitive and practical skills needed to use relevant information.		Works under direct supervision in structured environments.	Assistant technician, entry-level operator.
Level 3	Knowledge of facts, principles, processes, and general concepts.	Ability to apply skills to complete tasks and solve routine problems.	Limited responsibility; some autonomy in familiar tasks.	Maintenance technician, logistics worker.
Level 4	Factual and theoretical knowledge in broad contexts within a field.	Cognitive and practical skills to solve specific problems.	Can work independently with limited supervision; may supervise others.	Field technician, quality inspector.
Level 5	Fixed 5 Broad, specialised, factual and theoretical knowledge. Skills to develop creative and adaptive solutions.		Manages processes; takes responsibility for technical decisions.	System integrator, plant supervisor.
in a field involving cor		Skills to solve complex problems and make informed decisions.	High autonomy; responsible for people, resources, and project outcomes.	Project engineer, energy consultant.
Level 7	Highly specialized knowledge at the forefront of a field, including critical awareness of interdisciplinary connections.	Advanced skills to solve complex, unpredictable problems with innovative approaches; integrates research into practice.	Full autonomy; leads strategic decision-making, manages teams/resources, and assumes accountability for organizational outcomes.	Senior engineer, research manager, policy advisor, director of operations.
Level 8	Mastery of the most advanced knowledge in a field, contributing to original research/thinking	Transformative skills to develop new paradigms, synthesize ideas across disciplines, and guide groundbreaking solutions.	Highest autonomy; responsible for visionary leadership, ethical standards, and shaping the future of the field.	CEO, university professor, chief scientist, top-tier consultant.

Source: Adapted from (Cedefop, 2017)

This structured approach ensures three key benefits:

- 1. Transparency Employers and learners can clearly understand the expected competencies at each level.
- 2. Consistency Qualifications remain comparable across different education systems in the EU.
- 3. Flexibility Workers can leverage Recognition of Prior Learning (RPL) to validate their experience and transition into new roles with targeted upskilling.

Progression pathways enable individuals to build on their competencies and move across levels or sectors throughout their careers.

In a broader context, the EQF is recognised not only as a technical tool but as a transformative meta-framework that unifies and modernises qualifications throughout the European Union. Adopted by the European Parliament in 2008, the EQF promotes transparency, rationalisation, and comparability of qualifications across Member States, especially where national systems are diverse and fragmented (Coles, 2007; Méhaut & Winch, 2012). This modernisation effort is increasingly interacting with new forms of credentialing, as evolving qualification systems begin to incorporate microcredentials to enhance their agility and responsiveness (Cedefop, 2023).

The EQF shifts the focus from formal educational inputs to learning outcomes, defining what people know, understand, and are able to do (regardless of how or where that learning was acquired). In this sense, the EQF not only promotes transparency but also enables the recognition of informal and non-formal learning, a key factor in just transition processes.

2.2 Use of ESCO for Competence and Occupation Mapping

The ESCO classification is a multilingual vocabulary that identifies and categorises skills, competences, qualifications, and occupations relevant for the EU labour market and education and training (Commission, n.d.-b). This classification enables the precise identification of skill transferability between former coal mining occupations and emerging roles in the renewable energy sector. Its granular structure, which distinguishes between essential and optional skills, allows for the tailoring of training programmes to specific occupational profiles.

Furthermore, ESCO's integration into platforms such as Europass enhances the visibility and transparency of these competencies for both learners and employers, supporting informed career decisions and mobility across the EU (Commission, 2022). In this context, the ESCO classification system is applied to:

- Identify relevant occupations in the renewable energy sector.
- Map transferable skills from coal mining jobs.
- Define the competence requirements for new roles.

As a multilingual and standardised vocabulary, ESCO facilitates the construction of occupation-to-occupation transition matrices, which have been crucial in:

- Determining which mining roles are most suitable for reskilling into renewable energy occupations.
- Identifying competence gaps to be addressed through targeted training.
- Distinguishing the core and optional skills required for each target role.

This approach ensures that all proposed training programmes are labour-market oriented, aligned with current occupational standards, and supportive of just transition goals.

Significantly, the classification of occupations used in this deliverable is based on the outputs of Deliverable 5.2, which systematically mapped key occupations across the coal and renewable energy value chains, which categorises occupations according to energy technology (e.g., wind, solar, geothermal, hydrogen, batteries), stages in the value chain (e.g., manufacturing, installation, O&M), and skill level (high, medium, low). This foundational analysis underpins the selection of occupations for which training programmes are proposed in this document.

2.3 Microcredential-Based Modular Approach

The training plans are designed using a microcredential-based modular structure, in line with the European Council Recommendation on Microcredentials (2022). This approach responds to the increasing demand for flexible, accessible, and labour-market-relevant learning opportunities (Cedefop, 2024), particularly in the context of just transitions, where workers must quickly adapt to evolving sectoral needs. This model allows for:

- Short, targeted training modules that focus on specific skills or knowledge areas, aligned with occupational profiles and EQF levels.
- Flexible learning formats, including online, hybrid, and in-person delivery, facilitate
 access for adult learners, workers in remote areas, and those with family or work
 commitments.
- Stackable learning paths, enabling learners to progressively combine microcredentials over time to achieve a full qualification or diploma.

To ensure clarity, consistency, and quality, each training module incorporates the following key components:

- Clearly defined learning outcomes, in accordance with EQF descriptors (knowledge, skills, autonomy/responsibility).
- Estimated workload, expressed in hours or credits, to ensure transparency and comparability.
- Assessment criteria and methods, to validate the acquisition of competences, whether through practical demonstrations, tests, portfolios, or simulated tasks.

This modular approach delivers significant advantages by enabling:

- Supports rapid upskilling and reskilling, crucial for workers transitioning from the mining sector to the renewable energy sector.
- Facilitates RPL, allowing learners to validate previous experience and avoid redundancy.
- Promotes lifelong learning by enabling individuals to return to training throughout their careers without needing to commit to full-length programmes from the outset.
- Enhances mobility across sectors and countries, as microcredentials can be documented, shared, and recognised independently.

Furthermore, the use of microcredentials aligns with the European digital credential framework, which allows for secure digital documentation of learning achievements, increasing employability and transparency for employers, especially in emerging and rapidly evolving sectors such as geothermal energy, offshore wind, or battery technologies.

In the context of the training plans included in this deliverable, microcredentials are not standalone alternatives to full diplomas, but rather building blocks that can either lead to a comprehensive qualification or be used independently to certify critical competences.

This aligns with the perspective that microcredentials hold significant potential in vocational education and training (VET) by focusing on equipping learners with specific employability skills, moving beyond their traditional association with higher education (Pouliou, 2024). This makes them highly adaptable tools for just transition strategies, ensuring that both immediate job market needs and longer-term career development are addressed. The successful implementation of microcredentials depends on their ability to combine agility with credibility, ensuring they are both responsive to labour market needs and robustly integrated into evolving national qualification systems (Cedefop, 2024).

2.4 Competency-Based Curriculum Design (Learning Outcomes)

All training programmes are structured using a learning outcomes approach, as recommended in the EQF and ECVET (European Credit System for Vocational Education and Training) frameworks.

The ECVET is one of the key EU instruments designed to help individuals transfer, recognise, and accumulate their assessed learning outcomes to achieve a qualification or participate in lifelong learning through flexible and individualised learning pathways (Commission, n.d). This ensures that the training is not defined by time or content alone, but by the competences actually acquired by the learner. Each module or programme includes outcomes under three categories:

- Knowledge (theoretical and factual)
- Skills (cognitive and practical)
- Responsibility and autonomy (personal and social competences)

This competency-based methodology delivers three key benefits for learners and institutions alike:

- Facilitates modular certification and recognition of learning.
- Encourages learner-centred teaching and assessment.
- Supports the development of skills that are directly applicable in the workplace.

2.5 Quality Assurance and Recognition of Prior Learning

The design of the training plans incorporates elements of EQAVET (European Quality Assurance Reference Framework for Vocational Education and Training), a framework designed to promote a culture of quality improvement in VET and to enhance transparency, consistency, and trust in VET systems across the EU (Commission, n.d.-a). Key elements integrated from this framework include:

- Relevance to labour market needs.
- Learner satisfaction and outcome tracking.
- Continuous improvement based on feedback and monitoring.

Moreover, the methodology includes provisions for Recognition of Prior Learning (RPL). Many former coal workers already possess valuable skills in machinery operation, maintenance, safety, and systems control. Where applicable, the training plans are designed to:

- Allow validation of existing competences.
- Offer tailored pathways that avoid redundancy.
- Reduce training duration and costs for experienced workers.

3 STRUCTURE OF TRAINING PLANS

3.1 Overview of Template and Key Components

Each training plan follows a standardized template designed to ensure consistency, comparability, and alignment with European frameworks such as EQF and ESCO. The key components of the training plan include:

- Key Occupation: Specifies the target role aligned with labour market needs in the renewable energy sector.
- Training Programme Title: Describes the nature and focus of the training intervention.
- Mining Profile: Indicates the typical coal-related occupation from which the learner might be transitioning.
- Energy Technology: Specifies the relevant renewable energy domain (e.g., wind, solar, geothermal).
- EQF Level: Defines the expected complexity and autonomy level in terms of knowledge, skills, and responsibility.
- Training Description: A concise explanation of the purpose, scope, and goals of the programme.
- Modules / Microcredentials: Lists learning units that can be delivered as stackable microcredentials to facilitate flexible, progressive learning.

This template ensures traceability across profiles and levels, supports modular learning, and helps learners and institutions understand where each programme fits within broader qualification pathways.

3.2 Common structure across renewable energy technologies

Despite differences in technical requirements across renewable energy technologies (wind, solar, geothermal, etc.), the training plans maintain a common structural approach to promote standardisation and mobility. The shared elements include:

• Microcredential-Based Modular Design: All training programmes are divided into discrete modules which can be delivered and certified independently, allowing for lifelong learning and rapid upskilling.

- ESCO-Based Competence Mapping: Core and optional competencies for each programme are derived from the ESCO classification, ensuring labour market relevance.
- Learning Outcome Focus: Programmes emphasise practical and measurable learning outcomes, as per the EQF's learning-outcome approach.
- Flexible Delivery Modes: Modules can be delivered in-person, online, or hybrid formats, enhancing accessibility for adult and displaced learners.

This structural uniformity ensures that despite technological differences, learners benefit from consistent training quality, and employers can interpret qualifications easily across sectors.

3.3 Classification by Skill Level (High, Medium, Low)

Training plans are categorised according to the skill level required for the corresponding occupation, using a simplified classification of:

Low Skill Level (EQF 2–3): Basic tasks performed under supervision; suitable for entry-level workers transitioning from general manual or plant operations. Example: Assistant in the operation of pumps and geothermal circuits.

Medium Skill Level (EQF 4–5): Roles requiring technical skills, autonomy, and problem-solving. Example: Solar panel installer technician or Wind systems supervisor.

High Skill Level (EQF 6+): Professional or engineering-level positions demanding comprehensive knowledge and responsibility. Example: Energy efficiency engineer or Solar system design specialist.

This classification supports better matching of learners to appropriate pathways based on their background, aspirations, and recognition of prior experience.

3.4 Education Levels Covered (VET, Adult Learning, University)

The training plans span across a wide range of educational domains, facilitating a just transition for workers from diverse educational backgrounds:

- Vocational Education and Training (VET): Focused on practical, hands-on learning for technical and operational roles; usually aligned with EQF levels 2–4.
- Adult Learning/Upskilling Pathways: Targeted short-term training and microcredentials tailored for displaced coal workers and adult learners seeking rapid integration into renewable energy roles.

• Higher Education/University Programmes: Longer academic programmes, particularly relevant at EQF level 6 and above, for professional and managerial roles.

This diversity ensures that both entry-level and highly experienced workers can find accessible and relevant learning opportunities aligned with their individual needs.

Finally, Figure 1 presents a complete framework for training program design. It begins with a list of program components, detailing the key elements of each course, from its purpose to the technologies and competencies involved. It then organizes these programs into a tiered system based on skill level, ranging from foundational to advanced. This structured approach connects each program component to a specific educational pathway, creating a clear guide for career progression.

Figure 3-1. Training program details categorized by skill level

4 TRAINING PLANS BY RENEWABLE ENERGY SECTOR

This section outlines the proposed training plans for key renewable energy sectors (RES) relevant to a just transition from mining activities. The programmes have been designed following a modular, microcredential-based approach, aligned with EQF levels and prioritising skills transfer from mining to clean energy value chains. Each renewable energy sector is described in terms of target occupations, skill gaps, and thematic focus areas, supported by training pathways that allow for both rapid upskilling and lifelong learning.

The following subsections provide the detail by energy source.

4.1 Wind Energy

The wind energy sector stands out as a major pillar in the renewable energy transition, offering considerable employment potential for former coal workers. This is due to the sector's reliance on industrial maintenance, mechanical assembly, technical inspection, and safe operation at heights, all areas where mining workers already possess foundational experience. Roles such as wind turbine technicians, onshore maintenance workers, and installation coordinators often require a mix of practical know-how, physical resilience, and safety awareness, competences familiar to mining environments.

To facilitate this transition, the training plans for wind energy have been aligned with the EQF, ranging from EQF Level 2 (entry-level assistant roles) to Level 5 (technicians and supervisors). These plans follow a modular and microcredential-based structure, allowing displaced workers to acquire industry-relevant skills through short, stackable courses. This design supports progressive learning, enabling individuals to enter the sector quickly and continue building towards full qualifications while working.

The structure also recognises prior learning (formal, informal, or non-formal), making it easier for workers to validate their existing competences and reduce training time. In this way, the wind energy training strategy contributes to both economic inclusion and workforce mobility.

The training content focuses on key thematic areas such as mechanical and electrical maintenance, safety and rescue protocols, logistics and assembly of turbine components. Targeted profiles include wind turbine assistants, maintenance technicians, rotor blade inspectors, project supervisors, and advanced wind technicians. These profiles have been carefully selected to match real labour market needs and to align with the most transferable competences from the coal sector. Table 4.1 below provides an overview of the proposed training programmes by target occupation, EQF level, and technical focus.

Table 4-1. Wind Energy Training Programmes

Key Occupation	Training Programme	Mining Profile	EQF Level	Training Description	Modules / Microcredentials
Wind Turbine Assistant	Assistant in Wind Turbine Ground Operations	General plant assistant, shaft worker	2–3	Basic training for supporting wind turbine operations at ground level, including logistics and safety.	 Basic wind safety and PPE (personal protective equipment) Manual handling and logistics Ground signal communication
Maintenance Technician	Wind Turbine Maintenance Technician	Electrical or mechanical maintenanc e worker	4	Training in troubleshooting and maintaining mechanical/electrical systems in wind turbines.	 Electrical systems basics Mechanical diagnostics Preventive maintenance routines
Rotor Blade Inspector	Blade Damage Inspection and Minor Repairs	Surface technician, mechanical assistant	4	Specialized training for visual and ultrasonic inspection of rotor blades and minor structural repairs.	 Blade inspection techniques Composite repair methods Working at height certification
Wind Project Supervisor	Supervisor for Onshore Wind Farm Operations	Foreman, crew coordinator	5	Planning, supervising, and reporting on wind turbine installation and maintenance tasks.	 Project coordination Health and safety leadership Technical documentation
Advanced Wind Energy Technician	Advanced Design and Integration of Wind Energy Systems	Requires prior engineering background	5	Advanced technical training in wind turbine system optimisation, including SCADA-based monitoring, performance improvement, and integration into electrical networks. Focus on practical design tools and operational data analysis	SCADA systems and performance data analysis (Supervisory Control and Data Acquisition) Grid connection and compliance Wind farm layout and optimisation tools

As an example, Table 4.2 describes a structured training plan for transitioning mining workers to the wind energy sector as Assistant in Wind Turbine Ground Operations.

Designed for general plant assistants and pit workers (EQF levels 2-3), this 120-hour hybrid program combines online learning with hands-on experience, culminating in three stackable microcredentials. The curriculum focuses on safety, logistics, and communication, building on miners' existing skills in manual handling and risk awareness while providing a clear pathway to advanced positions (e.g., Wind Turbine Technician). Recognition of Prior Learning (RPL) accelerates access for experienced workers, ensuring an efficient transition to careers in the renewable energy sector.

Table 4-2. Outlines examples of training plans designed for the wind energy sector

Programme Title	Assistant i	in Wind Turb	ine Ground Operations					
Key Occupation	Wind Turbine Assistant							
Target Mining Profile	General Plant Assistant, Sha	ft Worker						
Renewable Energy	Wind Energy							
Sector								
EQFLevel	2–3							
Total Duration	120 hours (4 weeks full-time	/ 8 weeks pa	art-time)					
Delivery Mode	Hybrid (Online + In-Person P	ractical Trair	ning)					
Certification	3 Microcredentials (1 per mo	odule)						
Training Objectives	 Enable safe, effective grou Facilitate the transition of Provide stackable training 	coal workers	s to the renewable secto					
Learning Outcomes	 Use PPE and follow wind farm safety protocols. Assist in logistics and manual handling of components. Apply ground signalling techniques to coordinate with technical teams. 							
Assessment Methods	1. Knowledge Test (30%) 2. Practical Demonstration (40%) 3. Team-Based Scenario (30%)							
Recognition of Prior Learning (RPL)	Available for relevant mining operations.	experience	in safety procedures and	d logistics				
Progression Pathway	Leads to mid-level training (e.g. Wind Turbine Technician – EQF4)							
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded				
Wind Safety and PPE	Covers identification of site-specific hazards, correct use and inspection of personal protective equipment (PPE), fall protection systems, and emergency evacuation protocols. Emphasises wind-farm-specific safety standards and procedures.	40 hours	Identify and mitigate common safety risks on wind energy sites Select and use appropriate PPE correctly Execute emergency procedures safely and efficiently	Certificate in Wind Safety and PPE				

Manual Handling & Logistics	Trains learners in the basics of logistics support for turbine operations. Includes manual lifting techniques, tool and part handling, transportation, storage, and material flow at turbine sites.	40 hours	 Apply correct lifting and material handling techniques Support warehouse, storage, and onsite logistics Assist with loading, unloading, and transport coordination 	Certificate in Logistics Support
Ground Signal Communication	Focuses on communication protocols between ground and turbine teams. Includes the use of standard hand signals, radio procedures, and coordination techniques during installation and maintenance.	40 hours	 Execute hand and radio signals accurately Communicate effectively in a technical team Ensure safe coordination of turbine assembly or service tasks 	Certificate in Signal Operations

The detailed training plans for the remaining wind energy programmes, including Wind Turbine Maintenance Technician, Blade Damage Inspection and Minor Repairs, Supervisor for Onshore Wind Farm Operations, and Advanced Design and Integration of Wind Energy Systems, can be found in Appendix A.

4.2 Photovoltaic Energy

Photovoltaic Energy (PV) is one of the most accessible entry points into the renewable energy workforce, especially for individuals transitioning from manual or semi-skilled occupations. Installation, cabling, basic electrical work, and system maintenance are all areas that align closely with the skills and habits developed in mining-related activities such as equipment handling, fieldwork, and compliance with safety protocols.

The modular training plans for this sector have been mapped to EQF levels 2 through 5, depending on the complexity and responsibility associated with each role, from entry-level installers to solar system supervisors. Each module is linked to a specific learning outcome and microcredential, ensuring that learners can demonstrate their competence in a tangible and recognised way.

The use of microcredentials is particularly valuable for PV, as it allows rapid workforce deployment through short-term training, while also offering flexibility for continued education. In addition, the combination of theoretical modules (e.g., photovoltaic principles) with practical content (e.g., mounting systems or electrical safety) ensures a balance between knowledge acquisition and hands-on training.

The main thematic areas in these programmes include PV systems installation, maintenance, electrical safety, and operational management. Target occupations range from auxiliary PV installers and maintenance technicians to PV systems specialists and plant supervisors. Table 4.3 summarises the main training pathways, target profiles, EQF levels, and their core content.

Table 4-3. Photovoltaics Energy Training Programmes

Key Occupation	Training Programme	Mining Profile	EQF Level	Training Description	Modules / Microcredentials
Auxiliary PV Installer	Auxiliary in Solar Panel Installation	Mining Helper, Surface Operator	2-3	Basic assembly of solar module structures, preliminary wiring, and assistance to senior installers during on-site works.	Structural assemblyBasic wiringPPE and use of hand tools
Residential PV Installation Technician	Residential Photovoltaic Panel Installation	Electrical Technician, Maintenance Assistant	3	Installation of small- scale PV systems for residential and rural areas, integrating structural and basic electrical components.	 Basic electricity Structural mounting Inverter cabling Electrical safety regulations
PV Maintenanc e Technician	Maintenance in Photovoltaic Systems	Plant Technician, Electrical Operator	3–4	Inspection, cleaning, and preventive maintenance of PV systems, including basic troubleshooting and electrical checks.	 Panel cleaning Connection checks Voltage verification Preventive maintenance
PV Systems Specialist	Installation and Maintenance of Solar Systems	Electrician, Mechanic	4	Advanced installation, configuration, and performance optimisation of PV systems, including grid integration.	•System design •Inverters •Grid connection •Predictive maintenance
Photovoltaic Plant Supervisor	Photovoltaic Plant Supervisor	Plant Foreman	5	Management of plant operations, staff coordination, SCADA monitoring, and compliance with regulatory frameworks.	Team leadershipElectrical regulationsSCADA systemsManagement skills

The comprehensive training frameworks for the photovoltaic energy sector, encompassing programmes such as Auxiliary in Solar Panel Installation, Residential Photovoltaic Panel Installation, Maintenance in Photovoltaic Systems, Installation and Maintenance of Solar Systems, and Photovoltaic Plant Supervisor, are meticulously detailed in Appendix B. All programme emphasizes practical skills, safety protocols, and industry-relevant competencies, ensuring seamless integration into the photovoltaic workforce while supporting progressive upskilling and recognition of prior learning.

4.3 Geothermal Energy

Geothermal energy systems require a unique mix of mechanical, hydraulic, and geological expertise. This sector is especially well-suited for mine workers with experience in subsurface operations, pumping systems, drilling, and equipment maintenance. Moreover, the strong emphasis on safety and thermal control in geothermal plants echoes many of the procedures already familiar to mining professionals.

To bridge the transition into geothermal roles, the proposed training plans are organised by EQF levels, typically between Level 2 (auxiliary operators) and Level 5 (plant technicians or drilling coordinators). These are delivered in modular formats, enabling workers to gradually build knowledge in areas such as heat transfer, geothermal circuits, or environmental compliance. Each module is designed to stand on its own as a microcredential, which can be accumulated toward a more advanced diploma or certification.

This approach facilitates flexible and adaptive learning while allowing for specialisation in either shallow or deep geothermal systems. In particular, the microcredential system supports the requalification of workers already familiar with similar infrastructure and equipment, enhancing labour market integration and sector mobility.

The geothermal training content focuses on critical thematic areas including geothermal plant operation, preventive maintenance, drilling supervision, and applied geology. Target occupations range from geothermal operations assistants and low-enthalpy plant operators to maintenance technicians, drilling specialists, and applied geologists. These have been selected to leverage the most transferable skills of coal-sector workers, aligning with a progressive upskilling pathway. Table 4.4 below summarises the geothermal training programmes according to target occupations, EQF levels, and specific technical focus.

Table 4-4. Geothermal Energy Training Programmes

Key	Training	Mining	EQF	Training Description	Modules /
Occupation	Programme	Profile	Level		Microcredentials

Geothermal Operations Assistant	Assistant in Operation of Geothermal Pumps and Circuits	Pump Technician, Plant Operator	2–3	Introduction to geothermal plant operations, focusing on pump systems, closed circuit operation, and basic safety protocols.	Closed circuitsBasic safetyPreventive maintenanceMeter reading
Low- Enthalpy Plant Operator	Basic Operation of Geothermal Plants	Machinery Operator, Drilling Technician	3	Operation of low- enthalpy geothermal systems, including safety procedures, temperature monitoring, and fluid flow control.	 Geothermal well safety Temperature monitoring Flow control Basic pump maintenance
Geothermal Systems Maintenanc e Technician	Maintenanc e in Geothermal Installations	Mining Mechanic, Undergroun d Electrician	3–4	Routine inspection, fault detection, and maintenance of geothermal systems, including mechanical and fluid components.	Mechanical componentsFault detectionSystem cleaningMaintenance records
Geothermal Drilling and Systems Specialist	Geothermal Drilling and Maintenanc e Technician	Driller, Mechanic	4	Drilling operations, subsurface evaluation, and maintenance of geothermal wells, ensuring long-term performance.	Types of probesDrilling equipmentMud controlRepair and lubrication
Applied Geothermal Geologist	Specialist in Applied Geology for Geothermal Systems	Mine Geologist	5	Geotechnical and geological analysis for geothermal project design, including seismic interpretation and geochemistry.	 Seismic interpretation Geochemistry Geological software Applied geothermal systems

The detailed training architectures for the geothermal energy sector, including programmes such as Assistant in Operation of Geothermal Pumps and Circuits, Basic Operation of Geothermal Plants, Maintenance in Geothermal Installations, Geothermal Drilling and Maintenance Technician, and Specialist in Applied Geology for Geothermal Systems, are thoroughly outlined in Appendix C. Each curriculum prioritizes hands-on expertise, stringent safety standards, and sector-specific skills, fostering effective workforce integration while supporting continuous skill development and recognition of prior learning.

4.4 Green hydrogen

Green hydrogen represents a cutting-edge segment of the energy transition, involving high-tech processes such as electrolysis, hydrogen storage, and gas handling. While the industry is still emerging, its growth potential is substantial, and so is the need for skilled workers. Mining professionals, particularly those with backgrounds in chemistry, electrical safety, and process control, can be retrained to meet these demands.

The training plans for green hydrogen are positioned at EQF Levels 2 to 5, depending on the role (hydrogen plant operators, electrolyzer technicians, hydrogen maintenance technicians, logistics coordinators, and advanced hydrogen systems technicians). The microcredential-based design allows for the gradual acquisition of specialized skills such as handling high-pressure systems, controlling electrochemical processes, managing hydrogen logistics, or ensuring occupational safety in explosive environments.

Given the technical complexity and regulatory sensitivity of hydrogen operations, modular training ensures that each step in the learning pathway is clearly certified and externally validated. This approach builds workforce capacity while supporting ongoing professional development and specialisation.

Key thematic areas for these programmes include the safe operation of hydrogen production facilities, maintenance of hydrogen equipment, system diagnostics, process control, and energy efficiency. Target occupations range from hydrogen plant operators and electrolyzer technicians to maintenance specialists, logistics coordinators, and advanced systems technicians. Table 4.5 summarises the proposed training programmes, target mining profiles, EQF levels, and contents.

Table 4-5. Green Hydrogen Training Programmes

Key Occupation	Training Programme	Mining Profile	EQF Level	Training Description	Modules / Microcredentials
Hydrogen Plant	Basic	Process Plant	2-3	Operational	Operating
Operator	Operator in Hydrogen Plants	Operator		supervision of electrolysis and hydrogen systems.	 Safety Pressure and temperature control
Electrolyzer Technician	Auxiliary Technician in Green Hydrogen Production	Chemical Plant Operator, Technical Assistant	3	Training to support operation and monitoring of electrolysis systems.	 Electrolysis fundamentals Cell monitoring Hydrogen safety Operational parameters control

Maintenance Technician	Maintenance in Hydrogen Facilities	Refrigeration Technician, Mining Mechanic	4	Diagnosis, preventive maintenance, and optimization of hydrogen systems. Autonomy in troubleshooting.	 Advanced lubrication techniques Leak detection and pressure system diagnostics Preventive maintenance planning Safety protocols for high-risk interventions
Logistics Coordinator	Logistics and Hydrogen Storage Coordinator	Logistics Coordinator	5	Management of hydrogen transport, storage, and traceability.	•ADR regulation •Route planning •Specific risk management
Advanced Hydrogen Systems Technician	Advanced Operation and Efficiency of Hydrogen Production Systems	Process Engineer, Electrochemical Technician, Energy Consultant	5	High-level technical training for the configuration, optimisation, and process control of hydrogen production systems. Includes advanced use of automation, SCADA, and energy modelling tools to improve efficiency and safet.	 Applied chemistry for hydrogen systems Automation and process control SCADA monitoring and analysis Energy models and efficiency simulation

The in-depth training blueprints for the green hydrogen energy sector, covering programmes such as Basic Operator in Hydrogen Plants, Auxiliary Technician in Green Hydrogen Production, Maintenance in Hydrogen Facilities, Logistics and Hydrogen Storage Coordinator, and Advanced Operation and Efficiency of Hydrogen Production Systems, are elaborately presented in Appendix D. Respectively training pathway emphasizes practical competencies, robust safety protocols, and specialized technical knowledge, ensuring smooth integration into the green hydrogen workforce while promoting progressive upskilling and the validation of prior learning.

4.5 Pumped hydro System (PHS)

Pumped hydro is one of the most mature and large-scale energy storage technologies, often integrated into mountainous or water-rich regions, many of which overlap with areas of traditional mining activity. The operation and maintenance of PHS systems involve mechanical systems, fluid dynamics, electrical regulation, and large-scale infrastructure

management, which align closely with mining occupations such as equipment operators, hydraulic system technicians, and environmental engineers.

Training plans for this sector are aligned with EQF Levels 3 to 5 and adopt a modular structure that facilitates gradual skill acquisition through microcredentials. Modules may cover hydro-mechanical components, turbine and pump operation, dam safety protocols, and real-time system monitoring. Given the high safety and environmental standards required in PHS facilities, specific training on compliance, control systems, and emergency preparedness is also included. This sector offers a direct and realistic transition pathway for workers from mines located near existing or planned hydro facilities.

The core thematic areas addressed by these training plans include the operation of hydraulic pumping systems, hydroelectric equipment assembly, industrial electrical installations, and structural assembly and supervision of hydro sites. Target occupations range from pump operators and electricians to site supervisors, supporting a staged approach to upskilling. Table 4.6 below details the proposed training programmes, their target occupations, expected EQF levels, and technical contents.

Table 4-6. Pumped Hydro Training Programmes

Key Occupation	Training Programme	Mining Profile	EQF Training Description Level		Modules / Microcredentials	
Plant Operator	Basic Operator in Pumped Hydro Systems	Pump Technic ian	3	Basic control, monitoring, and safety in pumped hydro storage systems.	•Fluid mechanics basics •Sensor reading •Routine checks	
Installation Technician	Assembly and Electrical Installation in Pumped Hydro Plants	Mainte nance Assista nt, Networ k Technic ian	3	Support in assembly of mechanical components and installation of cabling/control systems.	Plant componentsInstallation protocolsElectrical safety	
Maintenance Technician	Technician in Pumped Hydro Plant Assembly and Maintenance	Welder, Assem bly Technic ian	4	Professional assembly, repair, and maintenance of pumped hydro systems.	Hydraulic plansWeldingStructural assembly	
Site Supervisor	Supervisor for Pumped Hydro Construction and Operation	Mining Works Supervi sor	5	Leadership and coordination of teams in construction and operation stages.	 Site management Planning and budgeting Occupational risk prevention 	

Advanced Pumped Hydro Systems Technician	Advanced Operation and Optimisation of Pumped Hydro Plants Civil Works Techn ian, Mechanical Techn ian	c 5	Specialised technical training in the operation, optimisation, and monitoring of pumped hydro facilities, including hydraulic modelling, energy efficiency strategies, and SCADA integration for plant control	 Hydraulic modelling and analysis Energy optimisation strategies SCADA integration and monitoring Predictive maintenance for hydraulic systemsHydraulic modelling
--	---	--------	--	---

The detailed training frameworks for the pumped hydro energy sector, encompassing programmes such as Basic Operator in Pumped Hydro Systems, Assembly and Electrical Installation in Pumped Hydro Plants, Technician in Pumped Hydro Plant Assembly and Maintenance, Supervisor for Pumped Hydro Construction and Operation, and Advanced Operation and Optimisation of Pumped Hydro Plants, are comprehensively outlined in Appendix E. Each curriculum focuses on practical skills, stringent safety standards, and sector-specific expertise, enabling effective workforce integration while fostering continuous skill development and recognition of prior learning.

4.6 Battery Energy

Battery energy storage systems are becoming increasingly critical for grid flexibility and the broader integration of renewable energy sources. These systems require expertise in electrochemistry, electronics, cooling technologies, diagnostics, and digital control systems. For mining workers, especially those with backgrounds in electricity, equipment maintenance, and safety engineering, battery energy storage offers a promising career transition. Their existing technical skills provide a strong foundation, but they will need targeted upskilling in newer battery technologies to succeed in this field.

The training plans for this sector span EQF levels 2 to 5, designed with a high degree of modularity to adapt to the rapid pace of technological change (for example, lithium-ion, solid-state, or flow batteries). Through a system of microcredentials, learners can progressively build their skills in essential topics such as cell architecture, battery integration, charge/discharge management, safety procedures for high-voltage systems, and predictive maintenance. This approach supports rapid labour market entry through short, focused training blocks, while also providing clear routes for advanced certification over time.

The modular structure of these programmes further supports lifelong learning, ensuring workers can keep pace with new standards, evolving technologies, and environmental

sustainability requirements. Key thematic areas include battery production, assembly, quality control, system integration, safety, and circular economy processes for battery recycling. Target occupations range from assembly technicians to battery storage systems technicians, including specialized roles like circular economy technicians (Batteries) for recycling and material recovery. Table 4.7 summarises these pathways, including the recommended microcredential levels and their core components.

Table 4-7. Battery Energy Training Programmes

Key Occupation	Training Programme	Mining Profile	EQF Level	Training Description	Modules / Microcredentials
Assembly Technician, Production Operator	Auxiliary in Battery Assembly	Plant Operator	2	Manual and semi- automated assembly of battery cells and modules, focusing on safe handling and quality.	•Safe handling •Quality control •Industrial ergonomics
Process Operator, Battery Assembler	Operator in Battery Manufacturing Lines	Processing Plant Operator	3	Operation of assembly lines, packaging, and inspection of battery components.	Tool usageVisual quality controlHazardous material safety
Maintenance Technician, Logistics Assistant	Technician in Battery Maintenance and Storage	Mechanical Maintenance Technician	4	Inspection, maintenance, and integration of battery systems in energy networks.	Connection protocols Charge / discharge testing Electrical safety norms
Circular Economy Technician (Batteries)	Specialist in Battery Recycling and Circular Economy	Environmental Technician	5	Recovery, treatment, and reuse of used batteries according to environmental standards.	Cell identificationSeparationprocessesEnvironmentalcompliance
Battery Systems Integrator, Energy Storage Technical Supervisor	Technician in Battery System Configuration	Electrical Systems Technician	5	Practical configuration, commissioning, and performance monitoring of mediumscale battery storage systems. Focus on operational safety and interoperability with energy networks.	Battery pack interconnection SCADA monitoring (data interpretation/alarms) Performance validation testing (capacity/cycle tests) Safety protocols

The comprehensive training structures for the battery energy storage sector, including programmes such as Auxiliary in Battery Assembly, Operator in Battery Manufacturing Lines, Technician in Battery Maintenance and Storage, Specialist in Battery Recycling and Circular Economy, and Technician in Battery System Configuration, are elaborately detailed in Appendix F. Every training pathway emphasizes hands-on technical proficiency, rigorous safety practices, and industry-specific competencies, ensuring seamless workforce integration while supporting ongoing skill enhancement and validation of prior learning.

4.7 Cross-sectoral training plan

The cross-sectoral training plan is designed to address the needs of a rapidly evolving energy landscape, where professionals must operate across multiple renewable technologies and adapt to systemic changes in production, distribution, and sustainability requirements. Unlike sector-specific training initiatives, these academic programmes provide a comprehensive, integrated approach, enabling graduates to work at the intersection of engineering, environmental management, and economic transformation. The plan brings together undergraduate and postgraduate degrees as well as specialised short courses; an overview of the cross-sectoral academic programmes is presented in Table 4.8, which summarises target occupations, EQF levels and the main modules.

Table 4-8. Overview of Cross-Sectoral Academic Programmes

Key Occupation	Training Programme	Target Profile	Energy Technology Scope	EQF Level	Training Description	Core Subjects / Modules
Renewable Energy Systems Engineer	Degree in renewable energy and sustainability engineering	Secondary school graduates, technical diploma holders	Multi- technology (solar, wind, hydro, hydrogen, storage, bioenergy)	6	Multidisciplinary university degree covering the design, management, and optimisation of renewable energy systems with integrated sustainability principles.	Mathematics, Physics, Engineering Fundamentals, Renewable Energy Technologies, Smart Grids, Energy Storage, Sustainability, Project Management
Industrial Transition Manager	Postgraduate Programme in mining transition and sustainable	University graduates in engineering, environmental sciences, economics, or related fields	Cross- sector (mining transition, renewable integration,	7	Specialised training to lead industrial and territorial transformation processes towards sustainable	Transition Policy & Governance, Sustainable Territorial Planning, Circular Economy,

industrial	circular	energy models,	Socioeconomic
reconversion	economy)	focusing on	Impact
		mining regions in	Assessment,
		transition.	Stakeholder
			Engagement,
			Capstone
			Project
			•

4.7.1 Degree in renewable energy and sustainability engineering

The Bachelor's Degree in Renewable Energy and Sustainability Engineering is a cross-cutting academic programme that addresses the growing demand for professionals capable of operating across multiple renewable energy technologies while integrating sustainability and innovation into energy systems. Designed as a multidisciplinary degree, it combines core engineering knowledge with specialised technical training and transversal competencies that are essential to lead the energy transition.

Unlike sector-specific training plans focused on individual technologies such as solar, wind, or hydrogen, this degree provides a holistic educational approach. It enables graduates to design, manage, and optimise complex energy systems that incorporate multiple sources and meet evolving environmental, economic, and technological challenges.

The programme has been carefully designed with the following key objectives:

- Provide solid foundational knowledge in core scientific and engineering disciplines: mathematics, physics, chemistry, computer science, and general engineering.
- Build technical competence in all major renewable energy technologies: solar (PV and thermal), wind (onshore/offshore), geothermal, hydro, hydrogen, bioenergy, and energy storage systems.
- Develop transversal and cross-disciplinary skills in: project management, sustainability, circular economy, digitalisation, and entrepreneurship.
- Prepare students to design and implement integrated energy solutions across diverse contexts, including industrial, urban, rural, and off-grid settings.
- Encourage innovation, adaptability, and critical thinking through a strong emphasis on R&D, system thinking, and hands-on experience.

The structure of the programme includes 240 ECTS credits over four academic years, organised into two main phases:

Years 1 and 2 – Basic and Core Engineering Education:

These initial years focus on building a strong scientific and technical base with courses such as:

- Mathematics, physics, chemistry, statistics
- Computer science, programming, and digital systems
- Mechanical, electrical, and fluid mechanics
- Electronics, automation, and industrial instrumentation
- Environmental science, geology, and business fundamentals

Years 3 and 4 – Specialised Training in Renewable Energy and Sustainability:

In the final two years, students deepen their expertise in energy and sustainability through:

- Renewable energy technologies: solar PV and thermal, wind, hydro and minihydro, geothermal and aerothermal, hydrogen, and bioenergy
- Cross-cutting energy systems: distributed generation, smart grids, energy efficiency, and storage
- Applied sustainability: green building, sustainable mobility, circular resource use, recycling of critical minerals
- Professional development: project management, entrepreneurship, innovation, and industry engagement

The programme also includes a final year thesis, typically connected to a real-world problem or developed in collaboration with industry partners or research centres, reinforcing the programme's practical orientation.

Key Features of the Programme

- Transversal Scope: Graduates are prepared to work across all renewable energy technologies and contribute to system integration and interconnection.
- Hands-on Training: Internships, laboratories, and applied projects ensure a direct connection with industry practices.
- Digital and Technological Readiness: Training in Industry 4.0 tools, robotics, automation, and cybersecurity prepares students for future energy systems.

• Sustainability Integration: Environmental, social, and economic sustainability principles are embedded throughout the curriculum, in line with the objectives of the EU Green Deal and the climate neutrality agenda.

Table 4.9 presents the full curriculum of the degree programme, outlining the subjects, credits, and learning outcomes across the four academic years.

Table 4-9. Degree in renewable energy and sustainability engineering

FIRST YEAR						
SUBJETCS		AREA OF KNOWLEDGE				
FIRST SEMESTER	ECTS					
Math	6	Applied mathematics				
Algebra lineal	6	Applied mathematics				
Business	6	Business Organization				
Computer Science Fundamentals	6	Computer Science and Artificial Intelligence				
Mechanics and Thermodynamics	6	Applied Physics				
SUBTOTAL FIRST YEAR FIRST SEMESTER	30					
SECOND SEMESTER						
Graphic expression	6	Graphic Expression in Engineering				
Chemistry	6	Inorganic chemistry				
Statistics	6	Statistics and Operations Research				
Geographic Information System Applied to Energy Engineering	4.5	Cartographic, Geodesic and Photogrammetry Engineering				
Geological and Hydrogeological Techniques Applied to Energy	4.5	Prospecting and Mining Research				
Energy Policies and Sustainable Development	3	Business Organization				
SUBTOTAL FIRST YEAR SECOND SEMESTER	30					
SUBTOTAL FIRST YEAR	60					
	SECOND	YEAR				
FIRST SEMESTER						
Calculation Extension	6	Applied mathematics				
Structural mechanics	6	Continuum Mechanics and Structure Theory				
Materials Science	6	Materials Science and Metallurgical Engineering				
Electrical engineering. Electric machines	6	Ingeniería Eléctrica				
Electronics	6	Tecnología Electrónica				
SUBTOTAL SECOND YEAR FIRST SEMESTER	30					
SECOND SEMESTER						
Waves and Electromagnetism	6	Applied Physics				

Thermoenergatic Draceses	e	Heat Engines & Machines
Thermoenergetic Processes.	6	Heat Engines & Machines
Fluid Mechanical Engineering	6	Fluid Mechanics
Automatic regulation and control	4.5	Systems Engineering and Automation
Electrical Installations and Smart Grids	4.5	Ingeniería Eléctrica
Management, Entrepreneurship and Innovation	3	Business Organization
SUBTOTAL SEGUNDO CURSO SEGUNDO SEMESTRE	30	
SUBTOTAL SECOND YEAR SECOND SEMESTER	60	
	THIRD	/EAR
FIRST SEMESTER		
Energía eólica. Onshore y offshore	6	Fluid Mechanics/Construction Engineering
Generators and Heat Engines	6	Máquinas y Motores Térmicos
Numerical Methods	6	Applied mathematics
Hydraulic turbomachinery. Hydraulic and mini-hydraulic energy.	6	Mechanics of Fluids
Marine Energy	3	Hydraulic engineering
Critical Minerals and New Technologies. Reuse and Recycling	3	Mining
SUBTOTAL THIRD YEAR FIRST SEMESTER	30	
SECOND SEMESTER		
Energy Efficiency	6	Heat Engines & Machines
Self-consumption and Distributed Generation	3	Heat Engines & Machines
Digital Control of Electric Machines	4.5	Systems Engineering and Automation
Solar Thermal and Photovoltaic Energy. Solar Thermal Power Plants	7.5	Heat Engines & Machines
Geothermal, aerothermal and hydrothermal	4.5	Heat Engines & Machines/Mining Prospecting & Research
Bioenergía	4.5	Thermal Machines and Engines/Agroforestry Engineering
SUBTOTAL THIRD YEAR SECOND SEMESTER	30	
THIRD YEAR SUBTOTAL	60	
	FOURTH	YEAR
FIRST SEMESTER		
Integrated project management	6	Engineering Projects
Energy Storage	7.5	Electrical Engineering/Thermal Machines & Engines/Mining Prospecting & Research
Business Organization and Security	4.5	Business Organization
Sustainable mobility	6	Electrical Engineering/Machines and Heat

Sostenibilidad en la edificación e industria	6	Heat Engines & Machines
SUBTOTAL FOURTH YEAR FIRST SEMESTER	30	
SECOND SEMESTER		
Management Systems	3	Business Organization
Material Selection Criteria	4.5	Materials Science and Metallurgical Engineering
Terrain Engineering	4.5	Mining
Hydrogen as an energy vector	6	Heat Engines & Machines
ELECTIVES (CHOOSE ONE OR TWO)	6	
Final degree project	6	Research
SUBTOTAL FOURTH YEAR SECOND SEMESTER	30	
ELECTIVES (CHOOSE ONE)		
Mining and Circular Economy (Elective)	3	Mining
Ergonomics and Human Factors Engineering (Elective)	3	Business Organization
Market and Energy (Elective)	3	Business Organization
History of Engineering and Technology (Elective)	3	Construction Engineering
Internship in Company (optional)	6	Training
Robotics	6	Systems Engineering and Automation
Digitalization, Industry 4.0 and Cybersecurity	6	Computer Science and Al
Optional subtotals	30	
SUBTOTAL FOURTH YEAR SECOND SEMESTER	30	
FOURTH YEAR SUBTOTAL	60	
TOTAL GRADO	240	

4.7.2 Postgraduate programme in mining transition and sustainable industrial reconversion

The Postgraduate Programme in Mining Transition and Sustainable Industrial Reconversion (Table 4.10) represents a pioneering cross-sectoral initiative designed to empower engineers and industry leaders with the strategic and technical competencies needed to drive the transformation of mining-dependent regions. In an era where industrial decarbonisation and resource sustainability are paramount, this programme addresses critical gaps in repurposing mining infrastructure, optimising raw material flows, and integrating renewable energy systems into transitioning economies.

Unlike conventional sector-specific postgraduate studies, this programme adopts a holistic approach, bridging the gap between mining engineering, environmental science, and socioeconomic policy. It emphasizes practical solutions for industrial reconversion, ensuring graduates can design projects that harmonize technical feasibility with economic viability and community needs. By focusing on Just Transition frameworks, the curriculum aligns with EU climate neutrality goals and regional development strategies, preparing leaders to navigate the political, environmental, and technological dimensions of mining transitions.

The programme is structured around five pillars of competency development:

- 1. Mining Transition Strategies: Advanced training in mine closure planning, land restoration, and environmental remediation techniques to mitigate the ecological legacy of mining operations.
- 2. Renewable Energy Integration: Expertise in deploying solar, wind, hydro, and hydrogen systems within post-mining infrastructures, transforming these sites into hubs for clean energy production.
- 3. Circular Economy Principles: Proficiency in critical raw material recovery, recycling technologies, and industrial symbiosis to build resilient, sustainable supply chains.
- 4. Transition Governance: Skills in stakeholder engagement, policy alignment, and project management to ensure inclusive and equitable transitions for affected communities.
- 5. Innovation and Entrepreneurship: Tools to develop scalable business models that drive economic diversification in post-mining regions.
- 6. Programme Structure and Pedagogy

The 60 ECTS curriculum, spanning one academic year, is organized into three thematic blocks:

- Technical Transition Competencies: Focused on the practicalities of mining site repurposing, this block covers advanced mine closure techniques, environmental rehabilitation protocols, and the technical integration of renewable energy systems into industrial landscapes. Case studies highlight successful conversions of mining infrastructure into solar farms or pumped hydro storage facilities.
- 2. Sustainability and Circular Economy: Participants explore innovative approaches to resource management, including critical mineral recycling, waste valorization, and the design of closed-loop industrial systems. Emphasis is placed on aligning these strategies with EU directives on raw material autonomy and decarbonization.

3. Management, Policy, and Innovation: This block combines project management tools with policy analysis and stakeholder engagement methodologies. Participants learn to navigate regulatory frameworks, secure funding through the Just Transition Mechanism, and mediate conflicts between industry, governments, and local communities.

The programme culminates in an 18 ECTS Capstone project, where participants collaborate with industry partners or regional authorities to address a real-world transition challenge. Examples include designing repurposing plans for decommissioned coal mines or developing circular economy hubs for battery recycling.

Table 4.10 details the modular breakdown, ECTS allocation, and learning outcomes for each component of the programme.

Table 4-10. Postgraduate Programme in Mining Transition and Sustainable Industrial Reconversion

Module	ECTS	Description
Industrial Transition Policy and Governance	6	Frameworks and strategies for managing industrial and mining transitions at national and regional levels.
Sustainable Territorial Planning	6	Land-use planning tools, environmental assessment, and integration of renewable energy infrastructures.
Circular Economy and Industrial Symbiosis	6	Waste minimisation, materials recovery, and integration of local value chains.
Project Management in Transition Contexts	6	Planning, financing, and coordination of complex multi-stakeholder projects.
Socioeconomic Impact Assessment	6	Tools for evaluating economic diversification, job creation, and community resilience.
Digital Tools for Transition Monitoring	6	GIS, SCADA, and other digital platforms for monitoring progress and performance indicators.
Stakeholder Engagement and Communication	6	Participatory processes, conflict resolution, and public communication strategies.
Capstone Project	18	Applied project developed in collaboration with industry, government, or research centres, focusing on a real-world transition challenge.

5 IMPLEMENTATION STRATEGY AND RECOMMENDATIONS

This section outlines the strategic considerations for the effective implementation of the proposed training plans across different renewable energy sectors. While the training plans are designed to be adaptable, their success depends on coherent delivery strategies, recognition mechanisms, local alignment, and mechanisms for monitoring and improvement. The modular, microcredential-based approach adopted throughout ensures flexibility and scalability, but must be supported by institutional coordination, policy alignment, and ongoing evaluation to remain effective and relevant.

5.1 Suggested Delivery Modes and Institutions

Given the diversity of target learners, from young people entering the labour market to experienced mining professionals seeking to transition, the training programmes must accommodate a range of delivery modes and learning environments. These include:

- VET institutions, particularly for EQF Level 3–4 qualifications, where learners can gain hands-on experience in workshops and simulated environments. Many of these institutions already have infrastructure relevant to industrial or mechanical fields, which can be adapted for renewable energy training.
- Blended and online formats, especially for adult learners or those in rural areas.
 Digital platforms can deliver theoretical modules or microcredentials asynchronously, while practical components can be delivered during short, intensive in-person sessions at regional centres or through mobile training units.
- Industry-led programmes or apprenticeship models, in collaboration with renewable energy companies and public employment services. These models are particularly useful for EQF Level 4–5 learners who need workplace-based training and real-world exposure.
- Community organisations, NGOs, and local transition hubs can serve as delivery partners in areas affected by coal or mineral phase-out, especially when engaging vulnerable groups or those outside formal education systems.

Institutional partnerships between public, private, and civil society actors will be critical to ensure not only the deployment but also the sustainability of training offerings.

5.2 Certification and Accreditation Pathways

All proposed training plans are structured to align with the European Council's 2022 Recommendation on Microcredentials. Each training module, whether part of a longer programme or a standalone qualification, includes clear learning outcomes, assessment methods, and workload estimates. These can be issued as microcredentials that are:

- Transparent and standardised, including metadata such as EQF level, credit workload, issuing body, and acquisition date.
- Portable and stackable, enabling learners to accumulate and combine credentials over time toward a full qualification.
- Recognisable across borders, especially when integrated into Europass profiles and connected to National Qualification Frameworks (NQFs).

Accreditation pathways may involve national vocational education authorities, ministries of education, or specialised renewable energy certifying bodies. Where possible, partnerships with European Skills Agenda initiatives and European Centre for the Development of Vocational Training (CEDEFOP) databases can enhance the visibility and legitimacy of credentials.

For workers with existing experience in mining or related fields, Recognition of Prior Learning (RPL) mechanisms can shorten training time, reduce duplication, and increase motivation, especially for mid-career adults.

5.3 Adaptation at National or Regional Level

While the training plans are framed at the European level and grounded in EQF, their regional adaptation is essential for contextual relevance. Key considerations include:

- Technology prevalence: For instance, wind energy training will be more relevant in coastal or mountainous regions; geothermal training will focus on areas with tectonic or volcanic activity.
- Sociolinguistic and demographic factors: Training materials and delivery must be adapted for linguistic minorities, low-literacy learners, or underserved rural populations. Inclusion of gender-sensitive and intergenerational approaches is recommended.
- Alignment with territorial Just Transition Plans (JTPs): In regions undergoing coal or mining phase-outs, training programmes must be integrated into broader economic restructuring strategies, supported by local authorities, trade unions, and employers.

 Policy flexibility: National ministries and regional agencies should be able to adjust the training content or duration based on local labour market dynamics, while maintaining alignment with EQF levels and learning outcomes.

A clear example is found in Asturias (Spain), specifically in the Aller–Barredo–Figaredo complex. This region, historically dependent on coal mining, is now undergoing a transition toward geothermal, photovoltaic, and wind energy systems. The area presents favourable geological and hydrological conditions for geothermal applications, with extensive infrastructure in place due to its mining legacy. Training programmes in Asturias have been designed to:

- Reskill former mine workers into geothermal plant operators, pumped hydro technicians, or green hydrogen assistants.
- Be delivered in partnership with the University of Oviedo (UNIOVI), which has a local campus in Mieres, and nearby vocational training centres.
- Reflect local energy transition plans, which involve hydrogen production, electrolyser operation, and battery storage systems, all of which require new profiles not previously present in the local labour force.

Such programmes combine:

- On-site modules using decommissioned mines as training labs (e.g., Barredo mine, which still pumps over 1.2 million m³ of water annually),
- Online modules for theoretical and safety content,
- And microcredential certification to allow stackable learning and recognition beyond the region.

This localised strategy shows how training plans can be fine-tuned to:

- Match regional energy assets (e.g., geothermal potential),
- Address specific labour transitions (e.g., former pump operators becoming geothermal circuit technicians),
- And integrate into territorial JTPs at national and European levels.

Similar place-based adaptations are expected in other countries where the project operates.

5.4 Monitoring, Evaluation, and Continuous Improvement

To ensure the long-term success and quality of training implementation, a robust system of monitoring and evaluation must be embedded. This involves:

- Key Performance Indicators (KPIs) such as:
 - Number of learners trained per year.
 - Transition rates from mining to renewable energy employment.
 - Completion and certification rates.
 - Gender balance and inclusion of disadvantaged groups.
 - Learner satisfaction and employment outcomes six months post-training.
- Stakeholder feedback mechanisms, involving learners, instructors, employers, and public authorities to assess relevance, quality, and impact of training content.
- Continuous improvement processes, including:
 - Regular updates of modules to reflect new technologies (e.g., storage, digitalisation).
 - Periodic review of learning outcomes and assessment methods.
 - Inclusion of soft skills and green transversal competences as industry needs evolve.
- Digital tracking systems may also be implemented to manage microcredentials, enabling learners and institutions to monitor progress and assemble learning pathways efficiently.

Figure 2 provides a concise summary of the implementation strategy and main recommendations.

SUMMARY OF IMPLEMENTATION STRATEGY AND RECOMENDATIONS

Suggested Delivery Modes and Institutions

VET institutions for hands-on training (EQF 3-4)

Blended/online for adult/rural learners Industry-led apprenticeships (EQF 4-5)

Community/NGO partnerships for vulnerable groups

Public-private-civil society collaboration

Certification and Accreditation Pathways

Aligned with 2022 EU Microcredentials Recommendation

Transparent, portable, stackable microcredentials

Recognizable via Europass and NQFs

Accreditation by national bodies or renewable energy certifiers

RPL for experienced workers to shorten training

Adaptation at National or Regional Level

Tailored to regional energy needs (e.g., wind, geothermal)

Adjusted for sociolinguistic and demographic factors

Integrated with Just Transition Plans (JTPs)

Flexible policy for local labour market dynamics

Example: Asturias reskilling with UNIOVI partnership

ATT.

Monitoring, Evaluation, and Continuous Improvement

KPIs: learners trained, employment rates, inclusion

Stakeholder feedback for quality assessment

Updates for new tech and skills

Digital tracking for microcredentials

Supports just, inclusive energy transition

Figure 5-1. Summary of implementation strategy and recommendations

By incorporating these implementation elements, the training framework becomes not only a technical instrument for skills improvement, but a strategic tool to enable a more just, inclusive and prepared energy transition.

6 CONCLUSIONS & LESSONS LEARNED

This deliverable has demonstrated that the transition from coal mining to renewable energy requires not only the deployment of new technologies but also the design of robust educational pathways. Former coal workers possess a wide range of technical competences that, when properly mapped and connected with renewable energy requirements, can serve as the foundation for re-skilling strategies.

The analysis and programme design presented here show that transferable competences can significantly shorten the learning curve, reducing both training costs and barriers to labour reintegration. At the same time, modular and EQF-aligned structures ensure that programmes remain flexible, scalable, and compatible with lifelong learning approaches.

Furthermore, the inclusion of cross-sectoral academic programmes at university level extends the impact of this initiative beyond vocational training, fostering the development of multidisciplinary expertise capable of designing, managing, and optimising integrated renewable energy systems. In this sense, the deliverable not only provides training pathways for immediate reskilling needs but also contributes to building the future workforce of the sustainable energy economy.

Overall, the findings underline the importance of aligning training content with industry requirements, educational standards, and local socio-economic realities. By doing so, the proposed frameworks can serve as reference guidelines for policy-makers, educational institutions, and training providers seeking to implement effective re-skilling strategies across Europe.

The lessons relevant to the Project from this deliverable can be summarised as follows:

- 1. Transferability of competences: Coal mining workers hold technical skills in safety, maintenance, and process control that can be effectively adapted to renewable energy, offering a solid foundation for re-skilling.
- 2. Need for modular and flexible learning: Training programmes structured through micro-credentials and modular units allow progressive acquisition of competences, recognition at each stage, and adaptability to evolving industry needs.
- 3. Importance of alignment with EQF: Referencing the European Qualifications Framework ensures recognition, portability, and comparability of training outcomes across countries and sectors.
- 4. Multi-level educational approach: Addressing vocational, technical, and academic levels is essential to ensure inclusiveness, from plant operators and technicians to engineers and consultants.
- 5. Value of cross-sectoral programmes: University-level degrees and postgraduate courses provide a multidisciplinary dimension, preparing professionals for integrated system thinking and long-term industry innovation.

6. Policy and institutional relevance: The proposed training pathways can guide not only individual career transitions but also institutional curriculum development and policy design at regional, national, and EU levels.

7 GLOSSARY

ECTS - European Credit Transfer and Accumulation System

ESCO - European Skills, Competences, Qualifications and Occupations

EQAVET - European Quality Assurance Reference Framework for Vocational Education and Training

EQF – European Qualifications Framework

PPE - Personal Protective Equipment

PV Systems - Photovoltaics systems

RES – Renewable Energy Sources

RPL - Recognition of Prior Learning

SCADA - Supervisory Control and Data Acquisition

UNIOVI - Universidad de Oviedo

VET – Vocational Education and Training

8 REFERENCES

- Cedefop. (2017). *Description of the eight EQF levels. Europass*. Retrieved from https://europass.europa.eu/en/description-eight-eqf-levels.
- Cedefop. (2023). Microcredentials for labour market education and training: microcredentials and evolving qualifications systems. Retrieved from http://data.europa.eu/doi/10.2801/566352.
- Cedefop. (2024). *Microcredentials: striving to combine credibility and agility*. Retrieved from https://data.europa.eu/doi/10.2801/966682.
- Coles, M. (2007). Qualifications frameworks in Europe; Platforms for qualifications, integration and reform: European Union, Education and Culture DG.
- Commission, E. (2019). ESCO handbook European skills, competences, qualifications and occupations. *Publications Office of the EU*.
- Commission, E. (2022). European skills, competences, qualifications and occupations Annual report 2021. Publications Office of the European Union.
- Commission, E. (n.d). European credit system for vocational education and training (ECVET). Retrieved August 1, 2025, from https://www.ec.europa.eu/social/main.jsp?catId=1141
- Commission, E. (n.d.-a). EQAVET European Quality Assurance in Vocational Education and Training. Directorate-General for Employment, Social Affairs and Inclusion Retrieved July 30, 2025, from https://employment-social-affairs.ec.europa.eu/policies-and-activities/skills-and-qualifications/working-together/eqavet-european-quality-assurance-vocational-education-and-training_en
- Commission, E. (n.d.-b). What is ESCO? Retrieved July 20, 2025, from https://esco.ec.europa.eu/en/about-esco/what-esco
- Méhaut, P., & Winch, C. (2012). The European Qualification Framework: skills, competences or knowledge? *European educational research journal*, 11(3), 369-381.
- Pouliou, A. (2024). *Exploring the emergence of microcredentials in vocational education and training (VET)*: Publications Office of the European Union.

APPENDICES

Appendix A – Training Plans Wind Energy

A1. Wind Turbine Maintenance Technician

Programme Title	Wind Turbine Maintenanc	e Technician				
Key Occupation	Maintenance Technician	Maintenance Technician				
Target Mining Profile	Electrical or mechanical m	aintenance wo	orker			
Renewable Energy Sector	Wind Energy					
EQFLevel	4					
Total Duration	120 hours (4 weeks full-tim	ne / 8 weeks pa	rt-time)			
Delivery Mode	Hybrid (Online + In-Person	Practical Train	ing)			
Certification	3 Microcredentials (1 per n	nodule)				
Training Objectives	1. Enable safe, effective tro	oubleshooting	and maintenance of wir	nd turbine systems.		
	2. Facilitate the transition of	of coal workers	to the renewable secto	r.		
	3. Provide stackable trainir	ng for progressi	ive upskilling.			
Learning Outcomes	1. Troubleshoot and repair	electrical system	ems in wind turbines.			
	2. Conduct mechanical dia	gnostics and r	epairs.			
	3. Implement preventive m	aintenance rou	utines to ensure operati	onal efficiency.		
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (3	0%)				
Recognition of Prior Learning (RPL)	Available for relevant minir procedures.					
Progression Pathway	Leads to higher-level traini	ng (e.g., Wind I		F 5)		
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
Electrical systems basics	Covers fundamentals of electrical components in wind turbines, including wiring, circuits, fault detection, and basic repairs. Emphasises safety standards and integration with turbine operations.	40 hours	 Identify and troubleshoot electrical faults Understand wiring and circuit principles 	Certificate in Electrical Systems Basics		
Mechanical diagnostics	Trains learners in identifying mechanical issues, using diagnostic tools, and performing repairs on turbine components like gears	40 hours	 Use diagnostic tools for mechanical faults Perform repairs on key mechanical parts 	Certificate in Mechanical Diagnostics		

	and bearings. Includes hands-on practice in mining-similar environments.			
	Focuses on scheduled maintenance practices to prevent breakdowns,	40 hours	 Develop and follow maintenance schedules 	Certificate in Preventive Maintenance
Preventive	including inspections,		 Conduct routine 	Routines
maintenance	lubrication, and record-		inspections and	
routines	keeping. Builds on mining		lubrication	
	maintenance experience		 Maintain accurate 	
	for wind-specific		maintenance	
	applications.		documentation	

A2. Blade Damage Inspection and Minor Repairs

Programme Title	Blade Damage Inspection	n and Minor R	epairs		
Key Occupation	Rotor Blade Inspector				
Target Mining Profile	Surface technician, mech	anical assista	nt		
Renewable Energy	Wind Energy				
Sector					
EQFLevel	4				
Total Duration	120 hours (4 weeks full-ti	me / 8 weeks p	art-time)		
Delivery Mode	Hybrid (Online + In-Person	n Practical Tra	ining)		
Certification	3 Microcredentials (1 per	module)			
Training Objectives	1. Enable safe, effective in	nspection and	repair of wind turbine	blades.	
	2. Facilitate the transition	of coal worke	rs to the renewable sec	ctor.	
	3. Provide stackable train	ing for progres	sive upskilling.		
Learning Outcomes	1. Perform visual and ultrasonic inspections of rotor blades.				
	2. Apply composite repair methods for minor damages.				
	3. Work safely at heights during inspections and repairs.				
Assessment Methods	1. Knowledge Test (30%)				
	2. Practical Demonstratio	n (40%)			
	3. Team-Based Scenario				
	(30%)				
Recognition of Prior	Available for relevant m	iining experier	nce in surface inspe	ection and mechanical	
Learning (RPL)	assistance.		I Destruit Organis de la constante de	-OF 5)	
Progression Pathway	Leads to higher-level train				
Module Title	Description	Duration	Key Competencies	Microcredential Awarded	
			Acquired	Awaiueu	
Blade inspection	Covers visual.	40 hours	Conduct visual	Certificate in Blade	
techniques	ultrasonic, and other	40110013	and ultrasonic	Inspection	
toomiquoo	non-destructive testing	Techniques			
	methods for detecting		InspectionsIdentify common	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	blade damage. Includes		blade defects		
	hands-on practice with		 Use inspection 		
	tools and interpretation		tools effectively		
	of results.				

Composite repair methods	Trains learners in repairing minor structural damages using composite materials, including sanding, patching, and curing processes. Emphasises quality control.	40 hours	 Apply composite patching and repair techniques Ensure structural integrity post-repair Follow material handling safety guidelines 	Certificate in Composite Repair Methods
Working at height certification	Focuses on safe practices for working at elevations, including harness use, fall protection, and rescue procedures specific to wind turbine blades.	40 hours	 Use fall protection equipment correctly Perform tasks safely at heights Execute rescue and emergency protocols 	Certificate in Working at Height

A3 Supervisor for Onshore Wind Farm Operations

Programme Title	Supervisor for Onshore Wind Farm Operations					
Key Occupation	Wind Project Supervisor					
Target Mining Profile	Foreman, crew coordinator					
Renewable Energy	Wind Energy					
Sector						
EQFLevel	5					
Total Duration	120 hours (4 weeks full-time / 8 v	veeks part-t	ime)			
Delivery Mode	Hybrid (Online + In-Person Practi	cal Training	()			
Certification	3 Microcredentials (1 per module	e)				
Training Objectives	1. Enable effective planning and	supervision	of wind farm operation	ns.		
	2. Facilitate the transition of coal	workers to	the renewable sector.			
	3. Provide stackable training for p	orogressive	upskilling.			
Learning Outcomes	1. Coordinate projects and teams	s in wind far	m settings.			
	2. Lead health and safety initiative	es.				
	3. Manage technical documentation and reporting.					
Assessment Methods	1. Knowledge Test (30%)					
	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining experience in foreman roles and crew coordination.					
Learning (RPL)						
Progression Pathway	Leads to advanced training (e.g., Advanced Wind Energy Technician – EQF 5)					
Module Title	Description Duration Key Competencies Microcredential					
			Acquired	Awarded		
Project coordination	Covers planning, scheduling,	40 hours	• Plan and	Certificate in		
	and overseeing wind farm		schedule project	Project		
	installation and maintenance		tasks	Coordination		

	tasks, including resource allocation and team management.		 Allocate resources and manage teams Monitor project progress effectively 	
Health and safety leadership	Trains learners in leading safety protocols, risk assessments, and compliance with wind farm regulations. Includes emergency response planning.	40 hours	 Conduct risk assessments and safety audits Lead emergency response teams Ensure regulatory compliance 	Certificate in Health and Safety Leadership
Technical documentation	Focuses on creating, managing, and interpreting technical reports, blueprints, and records for wind operations.	40 hours	 Prepare and manage technical reports Interpret blueprints and data Maintain accurate operational records 	Certificate in Technical Documentation

A4. Advanced Design and Integration of Wind Energy Systems

Programme Title	Advanced Design and Integration of Wind Energy Systems
Key Occupation	Advanced Wind Energy Technician
Target Mining Profile	Requires prior engineering background
Renewable Energy	Wind Energy
Sector	
EQFLevel	5
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	3 Microcredentials (1 per module)
Training Objectives	1. Enable advanced optimisation and integration of wind energy systems.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Analyse SCADA systems and performance data.
	2. Ensure grid connection and compliance.
	3. Use tools for wind farm layout and optimisation.
Assessment Methods	1. Knowledge Test (30%)
	2. Practical Demonstration (40%)
	3. Team-Based Scenario (30%)
Recognition of Prior	Available for relevant mining experience in engineering or technical analysis.
Learning (RPL)	
Progression Pathway	Leads to specialised roles in wind energy design and management.

Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded
SCADA systems and performance data analysis (Supervisory Control and Data Acquisition)	Covers monitoring and analysing wind turbine performance using SCADA tools, including data interpretation and system optimisation.	40 hours	 Monitor systems via SCADA interfaces Analyse performance data for improvements Optimise turbine operations based on data 	Certificate in SCADA Systems and Data Analysis
Grid connection and compliance	Trains learners in integrating wind systems with electrical grids, ensuring regulatory compliance and efficient power transmission.	40 hours	 Design grid connections for wind farms Ensure compliance with energy standards Troubleshoot grid integration issues 	Certificate in Grid Connection and Compliance
Wind farm layout and optimisation tools	Focuses on using software and tools for designing efficient wind farm layouts, including site analysis and energy yield predictions.	40 hours	 Use layout optimisation software Analyse site data for farm design Predict and maximise energy output 	Certificate in Wind Farm Layout and Optimisation

Appendix B – Training Plans Photovoltaic Energy

B1. Auxiliary in Solar Panel Installation

Programme Title	Auxiliary in Solar Panel Installation					
Key Occupation	Auxiliary PV Installer					
Target Mining Profile	Mining Helper, Surface Op	perator				
Renewable Energy Sector	Photovoltaic Energy					
EQFLevel	2–3					
Total Duration	120 hours (4 weeks full-ti	me / 8 weeks	part-time)			
Delivery Mode	Hybrid (Online + In-Person	n Practical Ti	raining)			
Certification	3 Microcredentials (1 per	module)				
Training Objectives	1. Enable safe, effective s	upport in sol	ar panel installation	operations.		
	2. Facilitate the transition	of coal work	ers to the renewable	e sector.		
	3. Provide stackable train	ing for progre	essive upskilling.			
Learning Outcomes	1. Use PPE and follow sol	ar site safety	protocols.			
	2. Assist in structural asse	embly and ba	asic wiring.			
	3. Support senior installer	s with hand	tools and on-site wo	orks.		
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstratio	n (40%)				
	3. Team-Based Scenario (30%)				
Recognition of Prior Learning (RPL)	Available for relevant min handling.	ing experienc	ce in safety procedu	res and equipment		
Progression Pathway	Leads to mid-level training	g (e.g. Reside	ential Photovoltaic F	Panel Installation – EQF3)		
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
Structural Assembly	Covers basic assembly techniques for solar module structures, including mounting frames and supports,	40 hours	 Assemble solar module structures accurately Identify and 	Certificate in Structural Assembly		
	with emphasis on safety and precision in on-site					
	works.		• Ensure structural integrity during installation			

Basic Wiring	Trains learners in preliminary wiring tasks for solar panels, including cable routing	viring tasks els, ple routing nnections, ng to rety he 40 hours spection, se of	Perform basic wiring connections safely	Certificate in Basic Wiring
	and basic connections, while adhering to electrical safety standards.		 Route cables and identify wiring components 	
			 Apply introductory electrical safety practices 	
PPE and Use of Hand Tools	Focuses on the selection, inspection, and proper use of		 Select and inspect PPE correctly 	Certificate in PPE and Hand Tools
personal protective equipment (PPE) and hand tools specific to solar installation environments.		• Use hand tools efficiently in solar works		
		 Follow safety protocols for tool handling 		

B2. Residential Photovoltaic Panel Installation

Residential Photovoltaic Panel Installation
Residential PV Installation Technician
Electrical Technician, Maintenance Assistant
Photovoltaic Energy
3
120 hours (5 weeks full-time / 10 weeks part-time)
Hybrid (Online + In-Person Practical Training)
4 Microcredentials (1 per module)
1. Enable effective installation of small-scale PV systems in residential settings.
2. Facilitate the transition of coal workers to the renewable sector.
3. Provide stackable training for progressive upskilling.
1. Apply basic electricity principles in PV installations.
2. Perform structural mounting and inverter cabling.
3. Ensure compliance with electrical safety regulations.
1. Knowledge Test (30%)
2. Practical Demonstration (40%)

Recognition of Prior Learning (RPL)	Available for relevant mining experience in electrical work and maintenance.						
Progression Pathway	Leads to mid-level training (e.g. Maintenance in Photovoltaic Systems – EQF 3–4)						
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded			
Basic Electricity	Covers fundamental principles of electricity relevant to PV systems, including circuits, voltage, and current in residential setups.		 Understand basic electrical concepts Apply electricity principles to PV components 	Certificate in Basic Electricity			
			• Identify electrical hazards in installations				
Structural Mounting	Trains learners in mounting solar panels on residential structures, including roof and ground systems, with focus on stability and integration.	30 hours	• Install structural mounts securely	Certificate in Structural Mounting			
			 Assess mounting sites for suitability 				
			• Use tools for precise mounting alignment				
Inverter Cabling	Focuses on cabling techniques for inverters in PV systems,	30 hours	 Perform inverter cabling accurately 	Certificate in Inverter Cabling			
	including connections and basic configuration for residential energy		• Connect components in PV circuits				
	integration.		• Test cabling for functionality				
Electrical Safety Regulations	Emphasises compliance with electrical safety	30 hours	• Apply safety regulations in PV work	Certificate in Electrical Safety Regulations			
	standards, including regulations for PV		 Conduct safety inspections 				
	installations in residential and rural areas.		Mitigate electrical risks effectively				

B3- Maintenance in Photovoltaic Systems

Programme Title Maintenance in Photovoltaic Systems

Key Occupation	PV Maintenance Techni	rian				
Target Mining Profile	Plant Technician, Electrical Operator					
Renewable Energy Sector	Photovoltaic Energy					
EQFLevel	3–4					
Total Duration	120 hours (5 weeks full-	time / 10 weel	ks part-time)			
Delivery Mode	Hybrid (Online + In-Pers	on Practical T	raining)			
Certification	4 Microcredentials (1 pe	er module)				
Training Objectives	1. Enable effective insp	ection and mai	intenance of PV systems.			
	2. Facilitate the transition	on of coal work	cers to the renewable sect	or.		
	3. Provide stackable tra	ining for progre	essive upskilling.			
Learning Outcomes	1. Perform panel cleanir	ng and connec	tion checks.			
	2. Conduct voltage verif	ication and tro	oubleshooting.			
	3. Apply preventive main	ntenance tech	niques.			
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstrat	ion (40%)				
	3. Team-Based Scenario	(30%)				
Recognition of Prior	Available for relevant m	ining experienc	ce in plant operations and	delectrical checks.		
Learning (RPL)						
	Leads to advanced training (e.g. Installation and Maintenance of Solar Systems – EQF					
Progression Pathway		ing (e.g. Instal	lation and Maintenance o	of Solar Systems – EQF		
	4)					
Progression Pathway Module Title		ing (e.g. Instal	lation and Maintenance of Key Competencies Acquired	of Solar Systems – EQF Microcredential Awarded		
Module Title	4) Description	Duration	Key Competencies Acquired	Microcredential Awarded		
	4)		Key Competencies	Microcredential		
Module Title	Description Covers techniques for cleaning solar panels, including methods to	Duration	Key Competencies Acquired • Clean panels	Microcredential Awarded Certificate in Panel		
Module Title	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris	Duration	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning	Microcredential Awarded Certificate in Panel		
Module Title	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining	Duration	Key Competencies Acquired • Clean panels effectively without damage	Microcredential Awarded Certificate in Panel		
Module Title	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris	Duration	Key Competencies Acquired Clean panels effectively without damage Identify cleaning tools and materials Assess panel	Microcredential Awarded Certificate in Panel		
Module Title	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining	Duration	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post-	Microcredential Awarded Certificate in Panel		
Module Title	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining	Duration	Key Competencies Acquired Clean panels effectively without damage Identify cleaning tools and materials Assess panel	Microcredential Awarded Certificate in Panel		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and	Duration 40 hours	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post- cleaning • Perform connection inspections	Microcredential Awarded Certificate in Panel Cleaning		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical	Duration 40 hours	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post- cleaning • Perform connection inspections accurately	Microcredential Awarded Certificate in Panel Cleaning Certificate in		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and	Duration 40 hours	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post- cleaning • Perform connection inspections	Microcredential Awarded Certificate in Panel Cleaning Certificate in		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical connections in PV systems, including troubleshooting basic	Duration 40 hours	Key Competencies Acquired Clean panels effectively without damage Identify cleaning tools and materials Assess panel condition post- cleaning Perform connection inspections accurately Identify faulty connections	Microcredential Awarded Certificate in Panel Cleaning Certificate in		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical connections in PV systems, including	Duration 40 hours	Key Competencies Acquired Clean panels effectively without damage Identify cleaning tools and materials Assess panel condition post- cleaning Perform connection inspections accurately Identify faulty	Microcredential Awarded Certificate in Panel Cleaning Certificate in		
Module Title Panel Cleaning	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical connections in PV systems, including troubleshooting basic issues. Focuses on	Duration 40 hours	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post- cleaning • Perform connection inspections accurately • Identify faulty connections • Apply basic repair techniques • Measure voltage	Microcredential Awarded Certificate in Panel Cleaning Certificate in Connection Checks		
Module Title Panel Cleaning Connection Checks	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical connections in PV systems, including troubleshooting basic issues. Focuses on measuring and	Duration 40 hours 40 hours	Key Competencies Acquired Clean panels effectively without damage Identify cleaning tools and materials Assess panel condition post- cleaning Perform connection inspections accurately Identify faulty connections Apply basic repair techniques Measure voltage safely	Microcredential Awarded Certificate in Panel Cleaning Certificate in Connection Checks		
Module Title Panel Cleaning Connection Checks	Description Covers techniques for cleaning solar panels, including methods to remove dirt and debris while maintaining system efficiency. Trains learners in inspecting and verifying electrical connections in PV systems, including troubleshooting basic issues. Focuses on	Duration 40 hours 40 hours	Key Competencies Acquired • Clean panels effectively without damage • Identify cleaning tools and materials • Assess panel condition post- cleaning • Perform connection inspections accurately • Identify faulty connections • Apply basic repair techniques • Measure voltage	Microcredential Awarded Certificate in Panel Cleaning Certificate in Connection Checks		

	tools for electrical checks and safety.		• Troubleshoot voltage-related issues	
Preventive Maintenance	Emphasises strategies for preventive maintenance, including scheduling and basic system optimisation.	40 hours	 Implement preventive maintenance plans Conduct routine system checks Optimise PV performance proactively 	Certificate in Preventive Maintenance

B4. Installation and Maintenance of Solar Systems

Programme Title	Installation and Mainten	ance of Solar	Systems			
Key Occupation	PV Systems Specialist					
Target Mining Profile	Electrician, Mechanic					
Renewable Energy Sector	Photovoltaic Energy					
EQFLevel	4					
Total Duration	120 hours (5 weeks full-ti	me / 10 weeks	part-time)			
Delivery Mode	Hybrid (Online + In-Person	n Practical Tra	ining)			
Certification	4 Microcredentials (1 per	module)				
Training Objectives	1. Enable advanced instal	llation and opt	imisation of PV systems			
	2. Facilitate the transition	of coal worke	rs to the renewable sect	or.		
	3. Provide stackable train	ing for progres	sive upskilling.			
Learning Outcomes	1. Design and configure P	V systems.				
	2. Handle inverters and gr	rid connection:	S.			
	3. Apply predictive mainte	enance technic	ļues.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstratio	n (40%)				
	3. Team-Based Scenario ((30%)				
Recognition of Prior Learning (RPL)	Available for relevant min	ing experience	in electrical and mecha	anical work.		
Progression Pathway	Leads to supervisory train	ing (e.g. Photo	ovoltaic Plant Supervisor	r – EQF5)		
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
System Design	Covers principles of designing PV systems,	30 hours	• Design PV systems effectively	Certificate in System Design		
	including sizing, layout,		• Calculate system requirements			

	and integration for optimal performance.		Optimise layouts for efficiency	
Inverters	Trains learners in selecting, installing,	30 hours	• Install and configure inverters	Certificate in Inverters
	and configuring inverters for PV		• Troubleshoot inverter issues	
	systems, with focus on functionality.		• Integrate inverters with PV components	
Grid Connection	Focuses on connecting PV systems to the grid, including compliance with standards and safe integration.	30 hours	• Perform grid connections safely	Certificate in Grid Connection
			• Ensure regulatory compliance	
	integration.		• Test grid- integrated systems	
Predictive Maintenance		 Apply predictive maintenance strategies Use monitoring 	Certificate in Predictive Maintenance	
			tools • Analyse data for system health	

B5. Photovoltaic Plant Supervisor

Programme Title	Photovoltaic Plant Supervisor
Key Occupation	Photovoltaic Plant Supervisor
Target Mining Profile	Plant Foreman
Renewable Energy Sector	Photovoltaic Energy
EQFLevel	5
Total Duration	120 hours (5 weeks full-time / 10 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	4 Microcredentials (1 per module)
Training Objectives	1. Enable effective management of PV plant operations.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Lead teams and coordinate staff.
	2. Monitor SCADA systems and ensure compliance.
	3. Apply management skills in PV operations.

Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining	•	n plant supervision an	d operations.		
Learning (RPL)						
Progression Pathway	Leads to higher-level roles in	n renewable e	nergy management.			
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
Team Leadership	Covers skills for leading teams in PV plant	30 hours	• Lead teams effectively	Certificate in Team Leadership		
	operations, including coordination, motivation,		 Coordinate staff activities 			
	and conflict resolution.		• Resolve operational issues			
Electrical Regulations	Trains learners in understanding and applying electrical regulations specific to PV plants, ensuring compliance.	30 hours	 Apply electrical regulations 	Certificate in Electrical Regulations		
			• Conduct compliance audits			
			Mitigate regulatory risks			
SCADA Systems	Focuses on using SCADA systems for monitoring	30 hours	• Operate SCADA systems	Certificate in SCADA Systems		
	and controlling PV plant operations, including data analysis.		Analyse operational data			
			Optimise plant performance			
Management Skills	Emphasises general management skills for PV plants, including	30 hours	• Apply management principles	Certificate in Management Skills		
	planning, budgeting, and strategic oversight.		• Plan and budget operations			
			Oversee plant compliance			

Appendix C – Training Plans Geothermal Energy

C1. Assistant in Operation of Geothermal Pumps and Circuits

Programme Title	Assistant in Operation of Geother	mal Pumps	and Circuits			
Key Occupation	Geothermal Operations Assistant					
Target Mining Profile	Pump Technician, Plant Operator					
Renewable Energy	Geothermal Energy					
Sector						
EQFLevel	2–3					
Total Duration	120 hours (5 weeks full-time / 10 w	eeks part-ti	ime)			
Delivery Mode	Hybrid (Online + In-Person Practica	al Training)				
Certification	4 Microcredentials (1 per module)					
Training Objectives	1. Enable safe, effective support in	geotherma	l pump and circuit ope	erations.		
	2. Facilitate the transition of coal w	orkers to th	ne renewable sector.			
	3. Provide stackable training for pro	ogressive u	oskilling.			
Learning Outcomes	1. Operate closed circuits and follo	ow basic saf	ety protocols.			
	2. Perform preventive maintenance	e tasks.				
	3. Conduct meter reading and basi	c monitorin	g.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior Learning (RPL)	Available for relevant mining experi	ience in saf	ety procedures and pla	ant operations.		
Progression Pathway	Leads to mid-level training (e.g. Ba	sic Operatio	on of Geothermal Plant	ts – EQF 3)		
Module Title	Description	Duration	Key Competencies	Microcredential		
			Acquired	Awarded		
Closed Circuits	Covers the operation and	30	Operate closed	Certificate in		
	monitoring of closed circuit	hours	circuits efficiently	Closed Circuits		
	systems in geothermal plants,		Monitor fluid flow			
	including fluid circulation and		in geothermal			
	basic controls.		systems			
			• Identify circuit			
			components			
Basic Safety	Trains learners in geothermal	20	accurately	Cortificate in		
Dasic Salety	plant safety protocols, including	30 hours	 Identify and mitigate 	Certificate in Basic Safety		
	hazard identification, emergency	liouis	geothermal safety	basic Salety		
	procedures, and personal		risks			
	protective equipment (PPE).					
	protestive equipment (i i E).		• Use PPE			
			correctly in plant environments			

Preventive Maintenance	Focuses on routine preventive maintenance for geothermal	30 hours	Execute emergency protocols safelyPerform preventive	Certificate in Preventive
	pumps and circuits, including inspections and basic upkeep to ensure system reliability.		maintenance checks • Inspect pumps and circuits for issues • Apply maintenance techniques effectively	Maintenance
Meter Reading	Emphasises accurate meter reading and data recording for geothermal operations, including interpretation of readings for system performance.	30 hours	 Read and interpret meters precisely Record operational data accurately Support monitoring of system efficiency 	Certificate in Meter Reading

C2. Basic Operation of Geothermal Plants

Programme Title	Basic Operation of Geothermal Plants
Key Occupation	Low-Enthalpy Plant Operator
Target Mining Profile	Machinery Operator, Drilling Technician
Renewable Energy	Geothermal Energy
Sector	
EQFLevel	3
Total Duration	120 hours (5 weeks full-time / 10 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	4 Microcredentials (1 per module)
Training Objectives	1. Enable effective operation of low-enthalpy geothermal systems.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Apply geothermal well safety procedures.
	2. Monitor temperature and control fluid flow.
	3. Perform basic pump maintenance.
Assessment	1. Knowledge Test (30%)
Methods	2. Practical Demonstration (40%)

Recognition of Prior Learning (RPL) Available for relevant mining experience in machinery operation and drilling.		3. Team-Based Scenario (30%)				
Progression Pathway Leads to mid-level training (e.g. Maintenance in Geothermal Installations – EQF3-4)	Recognition of Prior	·				
Progression Pathway Leads to mid-level training (e.g. Maintenance in Geothermal Installations – EQF 3-4)		Available for relevant minning experience in machinery operation and untiling.				
Description		Leads to mid-level training (e.g.	Maintenanc	e in Geothermal Installat	ions – FOF3–4)	
Geothermal Well Safety Safety Covers safety procedures specific to geothermal wells, including risk assessment, protective measures, and compliance with operational standards. Temperature Monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal performance. Flow Control Emphasises basic maintenance for geothermal pumps, including cleaning, munitoring cleaning, munitoring maintenance and compliance with operations and specific to geothermal wells safety protocols • Implement well safety protocols • Implement well safety protocols • Assess risks in geothermal pertormal operations • Ensure compliance with safety regulations • Ensure compliance with safety regulations • Monitor temperature levels effectively • Use monitoring equipment precisely • Interpret temperature data for operations • Control fluid flow accurately • Balance systems for efficiency • Troubleshoot flow-related issues • Perform pump maintenance tasks • Clean and lubricate						
Covers safety procedures specific to geothermal wells, including risk assessment, protective measures, and compliance with operational standards.		2 330	2 4.4.0			
Safety specific to geothermal wells, including risk assessment, protective measures, and compliance with operational standards. Trains learners in monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Basic Pump Maintenance Basic Pump Maintenance Septimental vells, including cleaning, includ	Geothermal Well	Covers safety procedures	30			
including risk assessment, protective measures, and compliance with operational standards. Temperature Monitoring Trains learners in monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal performance. Flow Control Fasic Pump Maintenance Including risk assessment, protective measures, and compliance with operations Flow Control Focuses on controlling fluid flow in geothermal performance. Flow Control Emphasises basic maintenance for geothermal pumps, including cleaning, Including valve operations and system balancing for optimal performance. Flow Control Focuses on controlling fluid flow accurately Flow Control Flow	Safety	, ,	hours	·	Geothermal	
protective measures, and compliance with operational standards. Temperature Monitoring Monitoring Flow Control Flow Control Flow Control Fl		•			Well Safety	
Standards. Ensure compliance with safety regulations				geothermal		
Temperature Monitoring Trains learners in monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal performance. Basic Pump Maintenance Monitoring Monitor temperature levels effectively Nonitoring Monitoring Nours Pomperature data for operations Certificate in Temperature defectively Nonitoring Certificate in Temperature data for operations Certificate in Temperature data for operations Nours Plow Control fluid flow accurately Balance systems for efficiency Troubleshoot flow-related issues Perform pump Maintenance for geothermal pumps, including cleaning, Clean and lubricate Maintenance Maintenance Maintenance		compliance with operational		operations		
Temperature Monitoring Trains learners in monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Flow Control Flow Cont		standards.		Ensure compliance		
Trains learners in monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal performance. Flow Control Emphasises basic maintenance for geothermal pumps, including cleaning, brown accurate levels effectively monitoring temperature levels effectively monitoring equipment precisely I temperature levels effectively monitoring equipment precisely I temperature data for operations Certificate in Temperature data for operations I control fluid flow accurately elevels effectively I temperature devels effectively monitoring equipment precisely I sale monitoring fluid tow accurately elevels effectively I semperature devels effectively monitoring fluid tow operations I control fluid flow accurately I sale monitoring fluid tow accurately I sale monitoring fluid flow accurately I sa				with safety		
Monitoring temperature in low-enthalpy systems, using tools for accurate readings and adjustments.				regulations		
systems, using tools for accurate readings and adjustments. Flow Control Focuses on controlling fluid flow in geothermal performance. Flow Control Focuses on controlling fluid flow in geothermal performance. Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Flow Control Flow Control fluid flow accurately Balance systems for efficiency Troubleshoot flow-related issues Flow Control Certificate in maintenance tasks Basic Pump Maintenance Maintenance Maintenance	Temperature	Trains learners in monitoring	30	• Monitor	Certificate in	
accurate readings and adjustments. • Use monitoring equipment precisely • Interpret temperature data for operations Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Find Control Flow Control • Control fluid flow accurately • Balance systems for efficiency • Troubleshoot flow-related issues Flow Control • Perform pump amintenance for geothermal phumps, including cleaning, • Clean and lubricate	Monitoring	temperature in low-enthalpy	hours	temperature levels	Temperature	
adjustments. equipment precisely Interpret temperature data for operations Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Flow Control Balance systems for efficiency Troubleshoot flow- related issues Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, Maintenance equipment precisely certificate in Flow Control Fl				effectively	Monitoring	
Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Fastic Pump Maintenance Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, I the Interpret temperature data for operations and some operations and succurately Basic Pump Maintenance I the Interpret temperature data for operations and operations I the Interpret temperature data for ope		accurate readings and		• Use monitoring		
Flow Control Flow		adjustments.		equipment precisely		
Flow Control Balance systems for efficiency Flow Control Troubleshoot flow- related issues Flow Control Flow Control Perform pump Flow Control Flow Control Flow Control Flow Control Flow Control Flow Control Flow Control Flow Control Flow Control Flow Contr				· ·		
Flow Control Focuses on controlling fluid flow in geothermal plants, including valve operations and system balancing for optimal performance. Flow Control Balance systems for efficiency • Troubleshoot flow- related issues Emphasises basic maintenance for geothermal pumps, including cleaning, Flow Control • Perform pump maintenance tasks • Certificate in Flow Control • Certificate in Flow Control • Balance systems for efficiency • Troubleshoot flow- related issues • Perform pump maintenance tasks • Clean and lubricate • Clean and lubricate				·		
flow in geothermal plants, including valve operations and system balancing for optimal performance. Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, flow in geothermal plants, hours Balance systems for efficiency • Troubleshoot flow-related issues • Perform pump Certificate in maintenance tasks Basic Pump • Clean and lubricate						
including valve operations and system balancing for optimal performance. Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, including valve operations and systems for efficiency • Troubleshoot flow-related issues • Perform pump maintenance tasks • Clean and lubricate Maintenance	Flow Control	_				
system balancing for optimal performance. Basic Pump Emphasises basic maintenance for geothermal pumps, including cleaning, System balancing for optimal for efficiency • Troubleshoot flow-related issues • Perform pump Certificate in maintenance tasks Basic Pump • Clean and lubricate Maintenance		•	hours	-	Flow Control	
performance. • Troubleshoot flow-related issues Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, • Troubleshoot flow-related issues • Perform pump maintenance tasks Basic Pump • Clean and lubricate Maintenance		,		,		
Basic Pump Emphasises basic 30 • Perform pump Certificate in maintenance for geothermal pumps, including cleaning, pumps, including cleaning, • Clean and lubricate Maintenance		• •		-		
Basic Pump Maintenance Emphasises basic maintenance for geothermal pumps, including cleaning, Description of the pump being		performance.				
Maintenancemaintenance for geothermal pumps, including cleaning,hoursmaintenance tasksBasic Pump• Clean and lubricateMaintenance	Basic Pumn	Emphasises hasic	30		Certificate in	
pumps, including cleaning, • Clean and lubricate Maintenance						
		· ·			·	
		lubrication, and minor repairs		pump components		
to maintain functionality. • Conduct minor						
repairs safely				repairs safely		

C3. Maintenance in Geothermal Installations

Programme Title	Maintenance in Geothermal Installations
Key Occupation	Geothermal Systems Maintenance Technician
Target Mining Profile	Mining Mechanic, Underground Electrician
Renewable Energy	Geothermal Energy
Sector	
EQFLevel	3–4

Total Duration	120 hours (5 weeks full-time / 10	weeks part-	time)		
Delivery Mode	Hybrid (Online + In-Person Practical Training)				
Certification	4 Microcredentials (1 per module)			
Training Objectives	1. Enable effective inspection and	I maintenan	ce of geothermal syste	ems.	
	2. Facilitate the transition of coal workers to the renewable sector.				
	3. Provide stackable training for progressive upskilling.				
Learning Outcomes	1. Maintain mechanical compone		-		
	2. Perform system cleaning and k				
	3. Handle fluid components in ge				
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (40%)				
	3. Team-Based Scenario (30%)				
Recognition of Prior	Available for relevant mining expe	rience in m	echanical and electrica	ıl maintenance.	
Learning (RPL)	G ,				
Progression Pathway	Leads to advanced training (e.g. G	Seothermal	Drilling and Maintenan	ce Technician –	
	EQF 4)		-		
Module Title	Description	Duration	Key Competencies	Microcredential	
			Acquired	Awarded	
Mechanical	Covers inspection and	30	Maintain	Certificate in	
Components	maintenance of mechanical	hours	mechanical	Mechanical	
	parts in geothermal systems,		components	Components	
	including repairs and		effectively		
	replacements.		• Identify wear and		
			tear in parts		
			 Perform repairs 		
			on mechanical		
			systems		
Fault Detection	Trains learners in detecting	30	• Detect system	Certificate in	
	faults in geothermal	hours	faults accurately	Fault Detection	
	installations, using diagnostic		Use diagnostic		
	tools and troubleshooting		equipment		
	methods.		Resolve common		
			installation issues		
System Cleaning	Focuses on cleaning techniques	30	Clean systems	Certificate in	
	for geothermal systems,	hours	thoroughly	System	
	including fluid lines and		• Prevent	Cleaning	
	components to prevent		contamination and		
	blockages.		blockages		
			Apply cleaning protocols safely		
			protocols safely		
Maintonana	Emphasisas kaoning assurats	20	 Maintain datailed 		
Maintenance Records	Emphasises keeping accurate records of maintenance	30 hours	 Maintain detailed records 		

activities, including	• Document	Certificate in
documentation and reporting	maintenance	Maintenance
for compliance.	activities	Records
	Generate reports	
	for system	
	oversight	

C4. Geothermal Drilling and Maintenance Technician

Programme Title	Geothermal Drilling and Mai	ntenance T	echnician			
Key Occupation	Geothermal Drilling and Syste	ems Special	ist			
Target Mining	Driller, Mechanic					
Profile						
Renewable Energy	Geothermal Energy					
Sector						
EQFLevel	4					
Total Duration	120 hours (5 weeks full-time	/ 10 weeks	part-time)			
Delivery Mode	Hybrid (Online + In-Person Pr	actical Traii	ning)			
Certification	4 Microcredentials (1 per mod	dule)				
Training Objectives	1. Enable advanced drilling ar	nd maintena	ance of geothermal wells			
	2. Facilitate the transition of o	coal worker	s to the renewable sector	·,		
	3. Provide stackable training t	for progress	sive upskilling.			
Learning Outcomes	1. Handle types of probes and	d drilling eq	uipment.			
	2. Control mud and perform r	epairs.				
	3. Ensure lubrication and long	g-term well	performance.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (4	10%)				
	3. Team-Based Scenario (30%)	%)				
Recognition of Prior	Available for relevant mining of	experience	in drilling and mechanica	l work.		
Learning (RPL)						
Progression	Leads to supervisory training	(e.g. Specia	ilist in Applied Geology fo	or Geothermal		
Pathway	Systems – EQF5)					
Module Title	Description	Duration	Key Competencies	Microcredential		
			Acquired	Awarded		
Types of Probes	Covers identification and	30	• Identify probe types	Certificate in Types		
	application of various	hours	accurately	of Probes		
	probes in geothermal		Select probes for			
	drilling, including selection		drilling tasks			
	for subsurface conditions.		Apply probes in			
			geothermal			
Delling Farriage and	Traina laarnara in anarating	20	evaluations	Cortificate in Drilling		
Drilling Equipment	Trains learners in operating	30	Operate drilling	Certificate in Drilling		
	and maintaining drilling	hours	equipment safely	Equipment		

	equipment for geothermal wells, with focus on safety and efficiency.		 Maintain equipment for performance Troubleshoot equipment issues 	
Mud Control	Focuses on mud management in drilling operations, including mixing, circulation, and control to support well stability.	30 hours	 Control mud effectively during drilling Mix and circulate mud properly Ensure well stability through mud use 	Certificate in Mud Control
Repair and	Emphasises repair	30	• Perform repairs on	Certificate in Repair
Lubrication	techniques and lubrication practices for geothermal drilling systems to ensure durability and functionality.	hours	drilling componentsApply lubrication techniquesExtend system lifespan through maintenance	and Lubrication

C5. Specialist in Applied Geology for Geothermal Systems

Programme Title	Specialist in Applied Geology for Geothermal Systems
Key Occupation	Applied Geothermal Geologist
Target Mining	Mine Geologist
Profile	
Renewable Energy	Geothermal Energy
Sector	
EQFLevel	5
Total Duration	120 hours (5 weeks full-time / 10 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	4 Microcredentials (1 per module)
Training Objectives	1. Enable effective geological analysis for geothermal projects.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Interpret seismic data and apply geochemistry.
	2. Use geological software for analysis.
	3. Design applied geothermal systems.
Assessment	1. Knowledge Test (30%)
Methods	2. Practical Demonstration (40%)
	3. Team-Based Scenario (30%)
Recognition of Prior	Available for relevant mining experience in geological analysis.
Learning (RPL)	

Progression	Leads to higher-level roles in rene	ewable enei	gy management.	
Pathway				
Module Title	Description	Duration	Key Competencies	Microcredential
Calamia	Covers took minutes for	20	Acquired	Awarded
Seismic Interpretation	Covers techniques for interpreting seismic data in geothermal contexts, including analysis for project planning.	30 hours	 Interpret seismic data accurately Analyse subsurface structures Apply interpretations to geothermal designs 	Certificate in Seismic Interpretation
Geochemistry	Trains learners in geochemical analysis for geothermal systems, including fluid composition and resource evaluation.	30 hours	 Conduct geochemical assessments Evaluate geothermal resources Interpret chemical data effectively 	Certificate in Geochemistry
Geological Software	Focuses on using specialised software for geological modelling in geothermal projects, including data input and visualisation.	30 hours	 Operate geological software proficiently Model geothermal systems Visualise and analyse data 	Certificate in Geological Software
Applied Geothermal Systems	Emphasises the application of geological knowledge to design and optimise geothermal systems, integrating analysis for performance.	30 hours	 Design applied geothermal systems Integrate geological data Optimise system performance 	Certificate in Applied Geothermal Systems

Appendix D – Training Plans Green Hydrogen

D1. Basic Operator in Hydrogen Plants

Programme Title	Basic Operator in Hydrogen Plant	:s				
Key Occupation	Hydrogen Plant Operator					
Target Mining Profile	Process Plant Operator					
Renewable Energy	Green Hydrogen					
Sector						
EQFLevel	3–4					
Total Duration	120 hours (4 weeks full-time / 8 we	eks part-tin	ne)			
Delivery Mode	Hybrid (Online + In-Person Practica	al Training)				
Certification	4 Microcredentials (1 per module)					
Training Objectives	1. Enable safe and effective operat	ion of hydro	gen plant systems.			
	2. Facilitate the transition of coal v	vorkers to th	ne renewable sector.			
	3. Provide stackable training for pr	ogressive up	oskilling.			
Learning Outcomes	1. Follow operating procedures for	hydrogen sy	ystems.			
	2. Apply safety protocols in hydrog	en operatio	ns.			
	3. Monitor and control pressure an	d temperatu	ire parameters.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining exper	ience in pro	cess plant operations.			
Learning (RPL)						
Progression	Leads to advanced training (e.g. Ma	aintenance	in Hydrogen Facilities -	- EQF 4)		
Pathway						
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
Operating	Covers standard operating	30	• Execute hydrogen	Certificate in		
Procedures	procedures for hydrogen plant	hours	plant operating	Operating		
	systems, including startup,		procedures	Procedures		
	shutdown, and routine		Perform startup			
	operations of electrolysis units.		and shutdown			
	tasks					
	Monitor routine					
			system operations			
Safety	Trains learners in safety	30	• Identify and	Certificate in		
	protocols specific to hydrogen	hours	mitigate hydrogen-	Hydrogen Safety		
	plants, including hazard		related risks			
	identification, emergency		Apply PPE and			
	procedures, and use of PPE.		emergency			
			protocols			

Pressure Control	Focuses on monitoring and controlling pressure parameters in hydrogen systems, including valve operations and system balancing.	30 hours	 Ensure safe operational practices Monitor and control pressure levels Operate pressure-related equipment Troubleshoot pressure issues 	Certificate in Pressure Control
Temperature Control	Emphasizes monitoring and controlling temperature in hydrogen production systems, using tools for accurate readings and adjustments.	30 hours	 Monitor and control temperature levels Use temperature monitoring equipment Interpret temperature data for operations 	Certificate in Temperature Control

D2. Auxiliary Technician in Green Hydrogen Production

Programme Title	Auxiliary Technician in Green Hydrogen Production				
Key Occupation	Electrolyzer Technician				
Target Mining	Chemical Plant Operator, Technical Assistant				
Profile					
Renewable Energy	Green Hydrogen				
Sector					
EQFLevel	3				
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)				
Delivery Mode	Hybrid (Online + In-Person Practical Training)				
Certification	4 Microcredentials (1 per module)				
Training Objectives	1. Enable support in operation and monitoring of electrolysis systems.				
	2. Facilitate the transition of coal workers to the renewable sector.				
	3. Provide stackable training for				
	progressive upskilling.				
Learning Outcomes	1. Understand electrolysis fundamentals and monitor cells.				
	2. Apply hydrogen safety protocols.				
	3. Control operational parameters in hydrogen systems.				
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (40%)				
	3. Team-Based Scenario (30%)				

Recognition of Prior	Available for relevant mining expe	erience in ch	nemical plant operatio	ns or technical	
Learning (RPL)	support.				
Progression	Leads to advanced training (e.g. N	1aintenance	in Hydrogen Facilities	s – EQF 4)	
Pathway					
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded	
Electrolysis Fundamentals	Covers the principles of electrolysis for green hydrogen production, including system components and basic operation.	30 hours	 Understand electrolysis principles Identify system components Support basic electrolysis operations 	Certificate in Electrolysis Fundamentals	
Cell Monitoring	Trains learners in monitoring electrolyzer cells, including performance checks and basic troubleshooting.	30 hours	 Monitor electrolyzer cell performance Identify cell operational issues Perform basic cell diagnostics 	Certificate in Cell Monitoring	
Hydrogen Safety	Focuses on safety protocols for handling hydrogen, including risk assessment, PPE use, and emergency procedures.	30 hours	 Apply hydrogen safety protocols Identify and mitigate hydrogen risks Use PPE effectively in hydrogen environments 	Certificate in Hydrogen Safety	
Operational Parameters Control	Emphasizes monitoring and controlling operational parameters (e.g., pressure, flow) in electrolysis systems for optimal performance.	30 hours	 Control operational parameters accurately Use monitoring tools effectively Ensure system stability and efficiency 	Certificate in Operational Parameters Control	

D3. Maintenance in Hydrogen Facilities

Programme Title Maintenance in Hydrogen Facilities

Key Occupation	Maintenance Technician			Maintenance Technician			
Target Mining	Refrigeration Technician, Minin	g Mechanic					
Profile		J					
Renewable Energy	Green Hydrogen						
Sector							
EQFLevel	4						
Total Duration	120 hours (4 weeks full-time / 8	3 weeks part	:-time)				
Delivery Mode	Hybrid (Online + In-Person Prac	ctical Trainir	ng)				
Certification	4 Microcredentials (1 per modu	ıle)					
Training Objectives	1. Enable diagnosis, maintenan	ce, and opt	imization of hydrogen	systems.			
	2. Facilitate the transition of co	al workers t	o the renewable secto	or.			
	3. Provide stackable training fo	r progressiv	e upskilling.				
Learning Outcomes	1. Perform advanced lubrication	n and leak d	letection.				
	2. Diagnose and plan preventive	e maintenar	nce for hydrogen syste	ems.			
	3. Apply safety protocols for hig	gh-risk inter	ventions.				
Assessment	1. Knowledge Test (30%)						
Methods	2. Practical Demonstration (40	%)					
	3. Team-Based Scenario (30%)						
Recognition of Prior	Available for relevant mining experience in refrigeration or mechanical maintenance.						
Learning (RPL)							
Progression	Leads to advanced training (e.g	. Advanced	Operation and Efficie	ncy of Hydrogen			
Pathway	Production Systems – EQF5)						
Module Title	Description	Duration	Key	Microcredential			
			Competencies	Awarded			
			Acquired				
Advanced	Covers advanced lubrication	30	Apply advanced	Certificate in			
Lubrication	methods for hydrogen	hours	lubrication	Advanced			
Techniques	system components,		techniques	Lubrication			
	ensuring durability and		Maintain system	Techniques			
	efficiency.		components				
	effectively						
	Optimize						
	component						
Leak Detection and	Trains learners in detecting	30	• Detect leaks	Certificate in Leak			
Pressure System							
	leaks and diagnosing hours accurately Detection and						
_	pressure system issues in		Diagnose	Pressure Diagnostics			
Diagnostics	pressure system issues in hydrogen facilities using		Diagnose pressure system	Pressure Diagnostics			
_	hydrogen facilities using		pressure system	Pressure Diagnostics			
_			pressure system issues	Pressure Diagnostics			
_	hydrogen facilities using		pressure system	Pressure Diagnostics			

Preventive	Focuses on planning and	30	• Plan preventive	Certificate in
Maintenance	executing preventive	hours	maintenance	Preventive
Planning	maintenance schedules for		schedules	Maintenance
	hydrogen systems to ensure		• Conduct	Planning
	operational reliability.		maintenance	
			inspections	
			 Optimize system 	
			performance	
Safety Protocols for	Emphasizes safety protocols	30	• Apply high-risk	Certificate in Safety
High-Risk	for high-risk maintenance	hours	safety protocols	Protocols for High-
Interventions	tasks in hydrogen facilities,		Mitigate risks	Risk Interventions
	including emergency		during	
	response and risk mitigation.		maintenance	
			• Execute	
			emergency	
			procedures safely	

D4. Logistics and Hydrogen Storage Coordinator

Programme Title	Logistics and Hydrogen Storage Coordinator
Key Occupation	Logistics Coordinator
Target Mining	Mining Logistics Coordinator
Profile	
Renewable Energy	Green Hydrogen
Sector	
EQFLevel	5
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	3 Microcredentials (1 per module)
Training Objectives	1. Enable effective management of hydrogen transport and storage.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Apply ADR regulations for hydrogen transport.
	2. Plan routes and manage specific risks for hydrogen logistics.
	3. Ensure traceability in hydrogen storage systems.
Assessment	1. Knowledge Test (30%)
Methods	2. Practical Demonstration (40%)
	3. Team-Based Scenario (30%)
Recognition of Prior	Available for relevant mining experience in logistics coordination.
Learning (RPL)	
Progression	Leads to higher-level roles in renewable energy logistics management.
Pathway	

Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded
ADR Regulation	Covers regulations for the transport of dangerous goods (ADR) specific to hydrogen, including compliance and documentation.	40 hours	 Apply ADR regulations for hydrogen transport Ensure compliance with transport standards Manage transport documentation 	Certificate in ADR Regulation
Route Planning	Trains learners in planning efficient and safe routes for hydrogen transport, considering logistics and regulatory constraints.	40 hours	 Plan efficient transport routes Optimize logistics for hydrogen delivery Assess route- specific risks 	Certificate in Route Planning
Specific Risk Management	Focuses on managing risks specific to hydrogen storage and transport, including hazard mitigation and emergency response.	40 hours	 Identify and mitigate hydrogen-specific risks Develop risk management plans Execute emergency response protocols 	Certificate in Specific Risk Management

D5. Advanced Operation and Efficiency of Hydrogen Production Systems

Programme Title	Advanced Operation and Efficiency of Hydrogen Production Systems
Key Occupation	Advanced Hydrogen Systems Technician
Target Mining	Process Engineer, Electrochemical Technician, Energy Consultant
Profile	
Renewable Energy	Green Hydrogen
Sector	
EQFLevel	5
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	4 Microcredentials (1 per module)
Training Objectives	1. Enable advanced configuration and optimization of hydrogen production systems.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Apply chemistry principles to hydrogen systems.
	2. Use automation, SCADA, and energy modeling tools for process control.

_	3. Optimize system efficiency and safety.				
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (409)	%)			
	3. Team-Based Scenario (30%)				
Recognition of Prior	Available for relevant mining exp	perience in	process engineering or	electrochemical	
Learning (RPL)	systems.				
Progression	Leads to higher-level roles in rer	newable en	ergy management.		
Pathway					
Module Title	Description	Duration	Key Competencies	Microcredential	
			Acquired	Awarded	
Applied Chemistry	Covers chemical principles	30	 Apply chemical 	Certificate in	
for Hydrogen	for green hydrogen	hours	principles to	Applied Chemistry	
Systems	production, including		hydrogen systems	for Hydrogen	
	electrolysis reactions and		 Understand 	Systems	
	material compatibility.		electrolysis		
			reactions		
			• Ensure material		
			compatibility		
Automation and	Trains learners in using	30	• Implement	Certificate in	
Process Control	automation systems for hydrogen production,	hours	automation for	Automation and	
			hydrogen systems	Process Control	
	including control algorithms		• Use control		
	and system integration.		algorithms		
			effectively		
			• Integrate systems		
			for optimal		
			performance		
SCADA Monitoring	Focuses on using SCADA	30	Operate SCADA	Certificate in	
and Analysis	systems for monitoring and	hours	systems	SCADA Monitoring	
	analyzing hydrogen		proficiently	and Analysis	
	production processes,		 Analyze 		
	including data interpretation.		production data		
			Optimize system		
			performance using		
			SCADA		
Energy Models and	Emphasizes energy modeling	30	• Develop energy	Certificate in	
Efficiency	and simulation tools to	hours	models for	Energy Models and	
Simulation	improve the efficiency and		hydrogen systems	Efficiency	
	safety of hydrogen production		Simulate system	Simulation	
	systems.		efficiency		
			Optimize		
			production		
			processes		

Appendix E – Training Plans Pumped Hydro System

E1. Basic Operator in Pumped Hydro Systems

Programme Title	Basic Operator in Pumped Hydro	Systems			
Key Occupation	Plant Operator				
Target Mining	Pump Technician				
Profile					
Renewable Energy	Pumped Hydro Energy				
Sector					
EQFLevel	3				
Total Duration	120 hours (4 weeks full-time / 8 we	eeks part-tir	ne)		
Delivery Mode	Hybrid (Online + In-Person Practical	<u> </u>			
Certification	3 Microcredentials (1 per module)				
Training Objectives	1. Enable safe and effective operat	tion of pum _l	ped hydro storage syste	ems.	
	2. Facilitate the transition of coal v				
	3. Provide stackable training for pr		. •		
Learning Outcomes	1. Understand fluid mechanics and	d perform s	ensor reading.		
	2. Conduct routine checks for syst				
	3. Apply safety protocols in pumpe	ed hydro op	erations.		
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (40%)				
	3. Team-Based Scenario (30%)				
Recognition of Prior	Available for relevant mining exper	ience in pu	mp operations or fluid	systems.	
Learning (RPL)					
Progression	Leads to mid-level training (e.g. As	sembly and	Electrical Installation	in Pumped Hydro	
Pathway	Plants – EQF 3)	5 ··			
Module Title	Description	Duration	Key Competencies	Microcredential	
Pl. 14 Marshard Co.		40	Acquired	Awarded	
Fluid Mechanics Basics	Covers fundamental principles of fluid mechanics relevant to	40 hours	 Understand fluid mechanics 	Certificate in Fluid Mechanics	
Dasics		110015		Basics	
	pumped hydro systems, including flow dynamics and		principlesIdentify pumped	DdSICS	
	system components.		hydro system		
	ojetem dempendito.		components		
			Apply fluid		
			dynamics		
			knowledge to		
			operations		
			opciations		

Sensor Reading	Trains Learners in reading and	40	• Read and	Certificate in
	interpreting sensors for monitoring water flow, pressure,	hours	interpret sensor data accurately	Sensor Reading
	and other parameters in pumped hydro systems.		 Monitor system performance using 	
	pampou njuro ojereme.		sensors	
			• Identify anomalies in	
			sensorreadings	
Routine Checks	Focuses on performing routine	40	 Conduct routine 	Certificate in
and Safety	checks to ensure system	hours	system checks	Routine Checks
	reliability and applying safety		 Apply safety 	and Safety
	protocols specific to pumped		protocols in hydro	
	hydro environments.		operations	
			• Ensure	
			operational	
			reliability	

E2. Assembly and Electrical Installation in Pumped Hydro Plants

Programme Title	Assembly and Electrical Installation in Pumped Hydro Plants
Key Occupation	Installation Technician
Target Mining	Maintenance Assistant, Network Technician
Profile	
Renewable Energy	Pumped Hydro Energy
Sector	
EQFLevel	3
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	3 Microcredentials (1 per module)
Training Objectives	1. Enable support in assembly and electrical installation of pumped hydro systems.
	2. Facilitate the transition of coal workers to the renewable sector.
	3. Provide stackable training for progressive upskilling.
Learning Outcomes	1. Assemble plant components and follow installation protocols.
	2. Apply electrical safety standards.
	3. Support cabling and control system installation.
Assessment	1. Knowledge Test (30%)
Methods	2. Practical Demonstration (40%)
	3. Team-Based Scenario (30%)
Recognition of Prior	Available for relevant mining experience in maintenance or electrical systems.
Learning (RPL)	

Progression	Leads to advanced training (e.g. Technician in Pumped Hydro Plant Assembly and			
Pathway	Maintenance – EQF4)			
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded
Plant Components	Covers the identification and assembly of mechanical components in pumped hydro plants, including turbines and pumps.	40 hours	 Identify and assemble plant components Use tools for component assembly Ensure component alignment and functionality 	Certificate in Plant Components
Installation Protocols	Trains learners in following installation protocols for mechanical and electrical systems in pumped hydro plants.	40 hours	 Apply installation protocols accurately Install mechanical and electrical systems Verify installation quality 	Certificate in Installation Protocols
Electrical Safety	Focuses on electrical safety standards for installing cabling and control systems in pumped hydro environments.	40 hours	 Apply electrical safety standards Mitigate electrical risks during installation Ensure safe cabling practices 	Certificate in Electrical Safety

E2. Technician in Pumped Hydro Plant Assembly and Maintenance

Programme Title	Technician in Pumped Hydro Plant Assembly and Maintenance
Key Occupation	Maintenance Technician
Target Mining	Welder, Assembly Technician
Profile	
Renewable Energy	Pumped Hydro Energy
Sector	
EQFLevel	4
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)
Delivery Mode	Hybrid (Online + In-Person Practical Training)
Certification	3 Microcredentials (1 per module)
Training Objectives	1. Enable professional assembly, repair, and maintenance of pumped hydro systems.

	2. Facilitate the transition of coal workers to the renewable sector.					
	3. Provide stackable training for p					
Learning Outcomes			-			
Learning Outcomes	Interpret hydraulic plans and personal plans are properly for a complete for		-			
	2. Conduct structural assembly for					
	3. Apply maintenance techniques	for system	reliability.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining expe	rience in w	elding or assembly.			
Learning (RPL)						
Progression	Leads to supervisory training (e.g.	. Supervisor	for Pumped Hydro Co	nstruction and		
Pathway	Operation – EQF5)					
Module Title	Description	Duration	Key Competencies	Microcredential		
			Acquired	Awarded		
Hydraulic Plans	Covers interpretation of	40	 Interpret 	Certificate in		
and Welding	hydraulic plans and welding	hours	hydraulic plans	Hydraulic Plans		
	techniques for assembling and		accurately	and Welding		
	repairing pumped hydro system		 Perform welding 			
	components.		for system			
	components • Ensure weld					
	quality and					
			integrity			
Structural	Trains learners in assembling	40	• Assemble	Certificate in		
Assembly	structural components of	hours	structural	Structural		
	pumped hydro plants, including components Assemb					
	alignment and stability checks.		effectively			
			Verify structural			
			alignment and			
			stability			
			Use assembly			
	F	40	tools proficiently	O. I.C I		
Maintenance	Focuses on maintenance	40	• Perform	Certificate in		
Techniques	techniques for pumped hydro	hours	maintenance tasks	Maintenance		
	systems, including inspections,		efficiently	Techniques		
	repairs, and system		Conduct system			
	optimization.		inspections and			
			repairs			
			Optimize system			
			performance			

E3. Supervisor for Pumped Hydro Construction and Operation

Programme Title	Supervisor for Pumped Hydro C	onstruction	and Operation			
Key Occupation	Site Supervisor					
Target Mining Profile	Mining Works Supervisor					
Renewable Energy Sector	Pumped Hydro Energy					
EQFLevel	5					
Total Duration	120 hours (4 weeks full-time / 8 v	weeks part-t	ime)			
Delivery Mode	Hybrid (Online + In-Person Practi	ical Training	<u>(</u>			
Certification	3 Microcredentials (1 per module	e)				
Training Objectives	1. Enable leadership and coordin	nation in pur	mped hydro construction	on and operation.		
	2. Facilitate the transition of coal	workers to	the renewable sector.			
	3. Provide stackable training for p	orogressive	upskilling.			
Learning Outcomes	1. Manage construction and oper	ration sites	effectively.			
	2. Plan and budget pumped hydr	o projects.				
	3. Implement occupational risk p	revention n	neasures.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%	o)				
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining expe	erience in s	ite supervision or mana	ngement.		
Learning (RPL)						
Progression	Leads to higher-level roles in ren	ewable ene	rgy management.			
Pathway						
Module Title	Description	Duration	Key Competencies	Microcredential		
			Acquired	Awarded		
Site Management	Covers leadership and	40	• Lead and	Certificate in Site		
	coordination skills for	hours	coordinate site	Management		
	managing teams during construction and operation of		teams			
	pumped hydro plants.		 Manage site operations 			
	pumped mydro plants.		efficiently			
			Resolve			
			operational			
	conflicts					
Planning and	Trains learners in planning and	40	Develop project	Certificate in		
Budgeting	budgeting for pumped hydro	hours	plans and budgets	Planning and		
	projects, including resource		• Allocate	Budgeting		
	allocation and cost		resources			
	management.		effectively			
		 Monitor project 				
			costs			

Occupational Risk	Focuses on implementing risk	40	• Apply	Certificate in
Prevention	prevention measures specific	hours	occupational risk	Occupational Risk
	to pumped hydro sites,		prevention	Prevention
	including safety protocols and		measures	
	compliance.		• Ensure site safety	
			compliance	
			Mitigate risks	
			effectively	

E4. Advanced Operation and Optimisation of Pumped Hydro Plants

Programme Title	Advanced Operation and Optin	nisation of	Pumped Hydro Plant	S
Key Occupation	Advanced Pumped Hydro Syste	ms Technic	ian	
Target Mining	Civil Works Technician, Mechan	ical Techni	cian	
Profile				
Renewable Energy	Pumped Hydro Energy			
Sector				
EQFLevel	5			
Total Duration	120 hours (4 weeks full-time / 8	weeks part	-time)	
Delivery Mode	Hybrid (Online + In-Person Prac	tical Trainir	ng)	
Certification	4 Microcredentials (1 per modu	le)		
Training Objectives	1. Enable advanced operation a	nd optimiza	ition of pumped hydro	facilities.
	2. Facilitate the transition of coa	al workers to	o the renewable secto	r.
	3. Provide stackable training for	progressive	e upskilling.	
Learning Outcomes	1. Perform hydraulic modeling a	and energy o	optimization.	
	2. Integrate and monitor SCADA	systems.		
	3. Apply predictive maintenance	e for hydrau	lic systems.	
Assessment	1. Knowledge Test (30%)			
Methods	2. Practical Demonstration (409)	%)		
	3. Team-Based Scenario (30%)			
Recognition of Prior	Available for relevant mining exp	perience in	civil works or mechan	ical systems.
Learning (RPL)				
Progression	Leads to higher-level roles in re	newable en	ergy management.	
Pathway				
Module Title	Description	Duration	Key	Microcredential
			Competencies	Awarded
			Acquired	
Hydraulic	Covers hydraulic modeling	30	• Develop	Certificate in
Modelling and	techniques for analyzing	hours	hydraulic models	Hydraulic Modelling
Analysis	water flow and system		Analyze system	and Analysis
	performance in pumped		performance	
	hydro plants.		Optimize water	
	flow dynamics			

Energy Optimisation Strategies	Trains learners in strategies to improve energy efficiency in pumped hydro systems, including load balancing and system tuning.	30 hours	 Implement energy optimization strategies Balance system loads effectively Tune systems for efficiency 	Certificate in Energy Optimisation Strategies
SCADA Integration and Monitoring	Focuses on integrating and using SCADA systems for real-time monitoring and control of pumped hydro facilities.	30 hours	 Integrate SCADA systems Monitor plant operations in real-time Analyze SCADA data for performance 	Certificate in SCADA Integration and Monitoring
Predictive Maintenance for Hydraulic Systems	Emphasizes predictive maintenance techniques for hydraulic systems, using data analysis to prevent failures and optimize performance.	30 hours	 Apply predictive maintenance techniques Analyze data for system health Prevent hydraulic system failures 	Certificate in Predictive Maintenance for Hydraulic Systems

Appendix F – Training Plans Battery Energy

F1. Auxiliary in Battery Assembly

Programme Title	Auxiliary in Battery Assembly					
Key Occupation	Assembly Technician, Production (Operator				
Target Mining	Plant Operator					
Profile						
Renewable Energy	Battery Energy Storage	Battery Energy Storage				
Sector						
EQFLevel	2					
Total Duration	120 hours (4 weeks full-time / 8 we	-	ne)			
Delivery Mode	Hybrid (Online + In-Person Practica	al Training)				
Certification	3 Microcredentials (1 per module)					
Training Objectives	1. Enable safe and effective assem	-	•			
	2. Facilitate the transition of coal w					
	3. Provide stackable training for pro					
Learning Outcomes	1. Handle battery components safe					
	2. Apply industrial ergonomics for e		•			
	3. Ensure compliance with safety a	nd quality s	tandards.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining experience in plant operations or manual assembly.					
Learning (RPL)	Leads to mid-level training (e.g. Operator in Battery Manufacturing Lines – EQF3)					
Progression Pathway	Leads to mid-level training (e.g. Op	erator in Ba	itery Manuracturing Lir	ies – EQF3)		
Module Title	Description	Duration	Key Competencies	Microcredential		
Ploudle fille	Description	Duration	Acquired	Awarded		
Safe Handling	Covers safe handling techniques	40 hours	Handle battery	Certificate in		
- Caro manage	for battery cells and modules,		components safely	Safe Handling		
	including hazard identification		 Identify battery- 			
	and use of personal protective		related hazards			
	equipment (PPE).		• Use PPE			
			effectively in			
			assembly			
			environments			
Quality Control	Trains learners in quality control	40 hours	 Perform quality 	Certificate in		
	processes for battery assembly,		controlinspections	Quality Control		
	including inspection and defect		• Identify defects in			
	identification.		battery			
			components			
			Ensure assembly			
			meets quality			
Industrial	Focuses on ergonomic practices	40 hours	standardsApply ergonomic	Certificate in		
Ergonomics	for battery assembly tasks,	40 110015	principles in	Industrial		
80000	baccory abbornisty tasks,		assembly	Ergonomics		
			accombig	2.00110111100		

ensuring efficiency and reducing physical strain.	 Optimize work efficiency
	 Reduce physical strain during tasks

F2. Operator in Battery Manufacturing Lines

Programme Title	Operator in Battery Manufacturing	g Lines				
Key Occupation	Process Operator, Battery Assembl	.er				
Target Mining Profile	Processing Plant Operator	Processing Plant Operator				
Renewable Energy Sector	Battery Energy Storage	Battery Energy Storage				
EQFLevel	3					
Total Duration	120 hours (4 weeks full-time / 8 weeks part-time)					
Delivery Mode	Hybrid (Online + In-Person Practica	•				
Certification	3 Microcredentials (1 per module)	it Truilling)				
Training Objectives	Enable operation of battery manual	ıfacturing li	nes and inspection pro	202201		
Trumming Objectives	2. Facilitate the transition of coal w			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	3. Provide stackable training for pro					
Learning Outcomes	Operate tools and perform visual		-			
Learning Outcomes	2. Handle hazardous materials safe	•				
	3. Support efficient battery manufactures	-	cesses.			
Assessment	Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)					
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining experience in processing plant operations.					
Learning (RPL)	6 - F					
Progression	Leads to advanced training (e.g. Te	echnician in	Battery Maintenance	and Storage – EQF		
Pathway	4)					
Module Title	Description	Duration	Key Competencies	Microcredential		
			Acquired	Awarded		
Tool Usage	Covers the use of tools for operating battery manufacturing lines, including assembly and packaging equipment.	40 hours	 Operate manufacturing tools proficiently Handle assembly and packaging equipment 	Certificate in Tool Usage		
			• Ensuretool safety and efficiency			
Visual Quality Control	Trains learners in visual inspection techniques to ensure quality in battery components and final products.	40 hours	 Perform visual quality inspections Identify defects in battery components Maintain quality 	Certificate in Visual Quality Control		
			standards in production			

Hazardous Material	Focuses on safe handling and	40 hours	 Handle 	Certificate in
Safety	management of hazardous		hazardous aterials	Hazardous
	materials used in battery		safely	Material Safety
	manufacturing, including		 Apply safety 	
	compliance with safety protocols.		protocols in	
			production	
			 Mitigate risks 	
			from hazardous	
			materials	

F3. Technician in Battery Maintenance and Storage

Programme Title	Technician in Battery Main	tenance an	nd Storage		
Key Occupation	Maintenance Technician, Lo				
Target Mining Profile	Mechanical Maintenance Technician				
Renewable Energy	Battery Energy Storage				
Sector					
EQFLevel	4				
Total Duration	120 hours (4 weeks full-tim	e / 8 weeks	part-time)		
Delivery Mode	Hybrid (Online + In-Person I	Practical Tra	aining)		
Certification	3 Microcredentials (1 per m	odule)			
Training Objectives	1. Enable inspection, maint	enance, an	d integration of battery s	systems.	
	2. Facilitate the transition o	f coal work	ers to the renewable sec	ctor.	
	3. Provide stackable training	g for progre	ssive upskilling.		
Learning Outcomes	1. Follow connection protoc		form charge/discharge	testing.	
	2. Apply electrical safety no				
	3. Ensure battery system in	tegration an	d reliability.		
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (40%)				
	3. Team-Based Scenario (3)	•			
Recognition of Prior	Available for relevant minin	g experience	e in mechanical or elect	trical maintenance.	
Learning (RPL)	Loods to advanged training	la « Taabai	aion in Datton, Cuatona	Configuration FOF F)	
Progression	Leads to advanced training	(e.g. recnni	cian in Battery System (Configuration – EQF 5)	
Pathway Module Title	Description	Duration	Key Competencies	Microcredential	
Ploudle Title	Description	Duration	Acquired	Awarded	
Connection	Covers protocols for	40 hours	 Follow battery 	Certificate in	
Protocols	connecting battery	40 110013	connection	Connection Protocols	
	systems to energy		protocols		
	networks, including wiring		 Integrate battery 		
	and integration		systems into		
	procedures.		networks		
	Ensure secure				
	connections				
Charge/Discharge	Trains learners in	40 hours	• Conduct	Certificate in	
Testing	performing charge and		charge/discharge	Charge/Discharge	
	discharge tests to assess		tests	Testing	
	battery performance and		 Assess battery 		
	health.		performance		

			 Identify battery health issues 	
Electrical Safety Norms	Focuses on applying electrical safety standards during battery maintenance and storage operations.	40 hours	 Apply electrical safety norms Mitigate electrical risks Ensure safe maintenance practices 	Certificate in Electrical Safety Norms

F4. Specialist in Battery Recycling and Circular Economy

Programme Title	Specialist in Battery Recycling a	ınd Circulaı	r Economy			
Key Occupation	Circular Economy Technician (Ba	tteries)				
Target Mining	Environmental Technician	Environmental Technician				
Profile						
Renewable Energy	Battery Energy Storage					
Sector						
EQFLevel	5					
Total Duration	120 hours (4 weeks full-time / 8 v	•				
Delivery Mode	Hybrid (Online + In-Person Practi		5)			
Certification	3 Microcredentials (1 per module	•				
Training Objectives	1. Enable recovery, treatment, an					
	2. Facilitate the transition of coal					
	3. Provide stackable training for p		•			
Learning Outcomes	1. Identify battery cells and perfo					
	2. Ensure compliance with environmental standards.					
	3. Support circular economy prac	tices in bat	tery recycling.			
Assessment	1. Knowledge Test (30%)					
Methods	2. Practical Demonstration (40%)				
	3. Team-Based Scenario (30%)					
Recognition of Prior	Available for relevant mining ex	perience ir	n environmental man	agement or material		
Learning (RPL)	handling.					
Progression	Leads to higher-level roles in rene	ewable ene	rgy management or ci	rcular economy.		
Pathway	Description	Duration	Vay Campatanaiaa	Migragradontial		
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded		
Cell Identification	Covers identification of battery	40 hours	 Identify battery 	Certificate in Cell		
	cells and materials for		cells and materials	Identification		
	recycling, including		 Classify cells for 			
	classification and handling		recycling			
	procedures.		 Handle materials safely 			
Separation	Trains learners in processes for	•				
Processes	separating battery		component	Separation		
	components, including		separation	Processes		
	mechanical and chemical		 Use separation 			
	methods.		techniques			
			effectively			

			• Ensure material recovery efficiency		
Environmental Compliance	Focuses on compliance with environmental standards for battery recycling, including regulations and waste management.	40 hours	 Ensure environmental compliance Apply waste management regulations Mitigate environmental risks 	Certificate Environmental Compliance	in

F5. Technician in Battery System Configuration

Programme Title	Technician in Battery System C	nnfiguratio	n		
Key Occupation	Battery Systems Integrator, Ene				
Target Mining	Electrical Systems Technician	igy otorage	recimical oupervisor		
Profile	Electrical dystems recrimetan	Electrical Systems recrimician			
Renewable Energy	Battery Energy Storage	Battery Energy Storage			
Sector					
EQFLevel	5				
Total Duration	120 hours (4 weeks full-time / 8	weeks part	-time)		
Delivery Mode	Hybrid (Online + In-Person Pract	tical Trainin	g)		
Certification	4 Microcredentials (1 per modu	le)			
Training Objectives	1. Enable configuration, commis	ssioning, an	d monitoring of battery	storage systems.	
	2. Facilitate the transition of coa	al workers to	the renewable sector.		
	3. Provide stackable training for	progressive	e upskilling.		
Learning Outcomes	1. Configure battery pack interce	onnections	and monitor SCADA sys	stems.	
	2. Perform performance validation testing.				
	3. Apply safety protocols for battery system operations.				
Assessment	1. Knowledge Test (30%)				
Methods	2. Practical Demonstration (409)	%)			
	3. Team-Based Scenario (30%)				
Recognition of Prior	Available for relevant mining exp	perience in	electrical systems or er	iergy management.	
Learning (RPL)					
Progression	Leads to higher-level roles in rer	newable en	ergy management.		
Pathway					
Module Title	Description	Duration	Key Competencies Acquired	Microcredential Awarded	
Battery Pack	Covers configuration and	30 hours	Configure battery	Certificate in	
Interconnection	interconnection of battery		pack	Battery Pack	
	packs for medium-scale		interconnections	Interconnection	
	storage systems, ensuring compatibility with energy		Ensure network		
	networks.		compatibilityVerify connection		
	Howorks.		integrity		
SCADA Monitoring	Trains learners in using	30 hours	Operate SCADA	Certificate in	
	SCADA systems for data		systems for	SCADA Monitoring	
	interpretation and alarm		monitoring		

	management in battery storage systems.		Interpret data and manage alarmsOptimize system performance	
Performance Validation Testing	Focuses on conducting capacity and cycle tests to validate battery system performance and reliability.	30 hours	 Perform capacity and cycle tests Validate battery system performance Identify performance issues 	Certificate in Performance Validation Testing
Safety Protocols	Emphasizes safety protocols for configuring and operating battery storage systems, including risk mitigation and emergency procedures.	30 hours	 Apply safety protocols for battery systems Mitigate operational risks Execute emergency procedures safely 	Certificate in Safety Protocols

